The subject of this book is the interplay between function space theory and potential theory. A crucial step in classical potential theory is the identification of the potential energy of a charge with the square of a Hilbert space norm. This leads to the Dirichlet space of locally integrable functions whose gradients are square integrable. More recently, a generalized potential theory has been developed, which has an analogous relationship to the standard Banach function spaces, Sobolev spaces, Besov spaces etc., that appear naturally in the study of partial differential equations. A surprisingly large part of classical potential theory has been extended to this nonlinear setting. The extensions are sometimes surprising, usually they are nontrivial and have required new methods.
"synopsis" may belong to another edition of this title.
"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want