Markov random field (MRF) modelling provides a basis for the characterization for contextual constraints on visual interpretation which allows for development of optimal vision algorithms systematically based on sound principles. This text presents a study on using MRFs to solve computer vision problems, covering areas such introduction to fundamental theories; formulations of various vision models in the MRF framework; MRF parameter estimation; and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book should be a useful reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want