Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint pair of functors. This appears in many substantially equivalent forms: That of universal construction, that of direct and inverse limit, and that of pairs offunctors with a natural isomorphism between corresponding sets of arrows. All these forms, with their interrelations, are examined in Chapters III to V. The slogan is "Adjoint functors arise everywhere". Alternatively, the fundamental notion of category theory is that of a monoid -a set with a binary operation of multiplication which is associative and which has a unit; a category itself can be regarded as a sort of general ized monoid. Chapters VI and VII explore this notion and its generaliza tions. Its close connection to pairs of adjoint functors illuminates the ideas of universal algebra and culminates in Beck's theorem characterizing categories of algebras; on the other hand, categories with a monoidal structure (given by a tensor product) lead inter alia to the study of more convenient categories of topological spaces.

*"synopsis" may belong to another edition of this title.*

From the reviews of the second edition:

“The book under review is an introduction to the theory of categories which, as the title suggests, is addressed to the (no-nonsense) working mathematician, thus presenting the ideas and concepts of Category Theory in a broad context of mainstream examples (primarily from algebra). ... the book remains an authoritative source on the foundations of the theory and an accessible first introduction to categories. ... It is very well-written, with plenty of interesting discussions and stimulating exercises.” (Ittay Weiss, MAA Reviews, July, 2014)

Second Edition

*S.M. Lane*

*Categories for the Working Mathematician*

*"A very useful introduction to category theory."―*INTERNATIONALE MATHEMATISCHE NACHRICHTEN

*"About this title" may belong to another edition of this title.*

Published by
Springer
(1971)

ISBN 10: 0387900365
ISBN 13: 9780387900360

New
Paperback
Quantity Available: 2

Seller:

Rating

**Book Description **Springer, 1971. Paperback. Book Condition: New. Never used!. Bookseller Inventory # P110387900365

More Information About This Seller | Ask Bookseller a Question

Published by
Springer

ISBN 10: 0387900365
ISBN 13: 9780387900360

New
PAPERBACK
Quantity Available: 1

Seller:

Rating

**Book Description **Springer. PAPERBACK. Book Condition: New. 0387900365 New Condition. Bookseller Inventory # NEW7.1062272

More Information About This Seller | Ask Bookseller a Question

Published by
Springer
(1971)

ISBN 10: 0387900365
ISBN 13: 9780387900360

New
Paperback
Quantity Available: 1

Seller:

Rating

**Book Description **Springer, 1971. Paperback. Book Condition: New. 1. This item is printed on demand. Bookseller Inventory # DADAX0387900365

More Information About This Seller | Ask Bookseller a Question