Let 8 be a Riemann surface of analytically finite type (9, n) with 29 - 2+n> O. Take two pointsP1, P2 E 8, and set 8,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1, P2) be the group of all orientation preserving homeomor- phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso- topic to the identity on 8, P2' ThenHomeot(8;P1, P2) is a normal sub- pl group ofHomeo+(8;P1, P2). We setIsot(8;P1, P2) =Homeo+(8;P1, P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen- Thurston-Bers type classification of an element [w] ofIsot+(8;P1, P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)(-, .) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r, x(r)).
"synopsis" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 6646906-n
Quantity: 15 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2416190183865
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. The emphasis of the two volumes is on complex analysis with classical topics such as value distribution, and modern topics such as complex dynamics, both in one and several complex variables; the application of complex analysis to partial differential equations and integral equations and its generalization to quaternionic and Clifford analysis; new results from real and functional analysis, numerical and computational mathematics; and areas in applied mathematics such as acoustics and computational biology. The emphasis of these two volumes is on complex analysis with classical topics such as value distribution, and modern topics such as complex dynamics, both in one and several complex variables. The text also includes; real and functional analysis, acoustics and computational biology. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780792365983
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780792365983_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Volume 1: Preface. 1. A central limit theorem for the Simple random walk on a crystal lattice M. Kotani, T. Sunada. 2. Level Statistics for Quantum Hamiltonians - Some Preliminary Ideas toward Mathematical Justification of the Theory of Berry and Tabor. Seller Inventory # 5969547
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 6646906
Quantity: 15 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Let 8 be a Riemann surface of analytically finite type (9, n) with 29 2+n> O. Take two pointsP1, P2 E 8, and set 8 ,1>2= 8 {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)( ,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Seller Inventory # 9780792365983
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 840. Seller Inventory # 262175281
Quantity: 4 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Let 8 be a Riemann surface of analytically finite type (9, n) with 29 2+n O. Take two pointsP1, P2 E 8, and set 8 ,12= 8 {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)( ,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)). Seller Inventory # 9780792365983
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 840 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Seller Inventory # 5672686
Quantity: 4 available