This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.
This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance.
This book is designed for advanced students, practitioners, and researchers, who may deal withmoderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.
"synopsis" may belong to another edition of this title.
Gregory C. Reinsel (now deceased) was Professor of Statistics at the University of Wisconsin, Madison. He was a fellow of the American Statistical Association. He also author of the book Elements of Multivariate Time Series Analysis, Second Edition, and coauthor, with G.E.P. Box and G.M. Jenkins, of the book Time Series Analysis: Forecasting and Control, Third Edition. Greg will remain the first author, in our gratitude.
Raja P. Velu taught business analytics and finance at Syracuse University. The first version of the book was mainly based on his thesis written under the supervision of Professor Reinsel and Professor Dean Wichern. He works in the big data models area with interest in high-dimensional time series and forecasting applications. His book, Algorithmic Trading and Quantitative Strategies, co-authored with practitioners from CITI and JP Morgan Chase, is published by Taylor and Francis. He was recently (2021–2022) a visiting researcher at Google working with the Resource Efficiency Data Science team.
Kun Chen is an associate professor in the Department of Statistics at the University of Connecticut. He is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute. The first version of the book has had profound influence on his research since his PhD study at the University of Iowa under the supervision of Professor Kung-Sik Chan. His related work has resulted in many publications in statistics, machine learning, and scientific journals and the developed methods have been applied to tackle consequential problems in various fields including public health, ecology, and biological sciences.
This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.
This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance.
This book is designed for advanced students, practitioners, and researchers, who may deal withmoderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.
"About this title" may belong to another edition of this title.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781071627914_new
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 156. Seller Inventory # C9781071627914
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal withmoderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering. 436 pp. Englisch. Seller Inventory # 9781071627914
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, su. Seller Inventory # 812306526
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26395592375
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Seller Inventory # V9781071627914
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 400817512
Quantity: 4 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Multivariate Reduced-Rank Regression | Theory, Methods and Applications | Gregory C. Reinsel (u. a.) | Taschenbuch | xxi | Englisch | 2022 | Springer | EAN 9781071627914 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 126151558
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance.This book is designed for advanced students, practitioners, and researchers, who may deal withmoderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 436 pp. Englisch. Seller Inventory # 9781071627914
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18395592381