Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better.
Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology.
You will:
"synopsis" may belong to another edition of this title.
Adi Polak is an open source technologist who believes in communities and education, and their ability to positively impact the world around us. She is passionate about building a better world through open collaboration and technological innovation. As a seasoned engineer and Vice President of Developer Experience at Treeverse, Adi shapes the future of data and ML technologies for hands-on builders. She serves on multiple program committees and acts as an advisor for conferences like Data & AI Summit by Databricks, Current by Confluent, and Scale by the Bay, among others. Adi previously served as a senior manager for Azure at Microsoft, where she helped build advanced analytics systems and modern data architectures. Adi gained experience in machine learning by conducting research for IBM, Deutsche Telekom, and other Fortune 500 companies.
"About this title" may belong to another edition of this title.
Seller: HPB-Red, Dallas, TX, U.S.A.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_430775295
Seller: HPB-Diamond, Dallas, TX, U.S.A.
paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_450564517
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 44652266-n
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Scaling Machine Learning with Spark: Distributed ML with Mllib, Tensorflow, and Pytorch. Book. Seller Inventory # BBS-9781098106829
Seller: Lakeside Books, Benton Harbor, MI, U.S.A.
Condition: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Seller Inventory # OTF-S-9781098106829
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # WO-9781098106829
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 44652266
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better.Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology.You will:Explore machine learning, including distributed computing concepts and terminologyManage the ML lifecycle with MLflowIngest data and perform basic preprocessing with SparkExplore feature engineering, and use Spark to extract featuresTrain a model with MLlib and build a pipeline to reproduce itBuild a data system to combine the power of Spark with deep learningGet a step-by-step example of working with distributed TensorFlowUse PyTorch to scale machine learning and its internal architecture. Seller Inventory # LU-9781098106829
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # WO-9781098106829
Quantity: 8 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781098106829