curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
"synopsis" may belong to another edition of this title.
From the reviews:
"This is a book about differential geometry and elasticity theory also published earlier as journal article. And, indeed it covers both subjects in a coextensive way that can not be found in any other book in the field. ... the list of references containing more than 120 items is representative enough and the interested reader should be able to find them among these." (Ivailo Mladenov, Zentralblatt MATH, Vol. 1100 (2), 2007)
"About this title" may belong to another edition of this title.
US$ 13.42 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Germany
Originalpappband. 23cm. Condition: Wie neu. 1. Edition . ERSTAUSGABE. IV, 220 Seiten. FRISCHES, SEHR schönes Exemplar der ERSTAUSGABE. In EXCELLENT shape. Sprache: Englisch Gewicht in Gramm: 560. Seller Inventory # 304852
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530143188
Quantity: Over 20 available
Seller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-E-022-02640
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are 'two-dimensional', in the sense that they are expressed in terms of two curvilinear coordinates used for de ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental 'Korn inequality on a surface' and to an 'in nit- imal rigid displacement lemma on a surface'. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di erential geometry per se,suchas covariant derivatives of tensor elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book 'Mathematical Elasticity, Volume III: Theory of Shells', published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604]. 216 pp. Englisch. Seller Inventory # 9781402042478
Quantity: 2 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781402042478_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Complete proofsSelf-contained treatmentInterplay between differential geometry and elasticity theorycurvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinea. Seller Inventory # 4093676
Quantity: Over 20 available
Seller: BennettBooksLtd, North Las Vegas, NV, U.S.A.
hardcover. Condition: New. In shrink wrap. Looks like an interesting title! Seller Inventory # Q-1402042477
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are 'two-dimensional', in the sense that they are expressed in terms of two curvilinear coordinates used for de ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental 'Korn inequality on a surface' and to an 'in nit- imal rigid displacement lemma on a surface'. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di erential geometry per se,suchas covariant derivatives of tensor elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book 'Mathematical Elasticity, Volume III: Theory of Shells', published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604]. Seller Inventory # 9781402042478
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 512. Seller Inventory # C9781402042478
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. vi + 212 1st Edition. Seller Inventory # 26293209
Quantity: 4 available