Optical interference plays a prominent role in scientific discovery and modern technology. Historically, optical interference was instrumental in establishing the wave nature of light. Nowadays, optical interference continues to be of great importance in areas such as spectroscopy and metrology. Thus far, the physical optics literature has discussed the interference of optical waves with the same single frequency (i.e., homodyne interference) and the interference of optical waves with two different frequencies (i.e., heterodyne interference), but it hardly ever deals with the interference of optical waves whose frequencies are continuously modulated (i.e., frequency-modulated continuous-wave int- ference). Frequency-modulated continuous-wave (FMCW) interference, which was originally investigated in radar in the 1950s, has been recently introduced in optics. The study of optical FMCW interference not only updates our kno- edge about the nature of light but also creates a new advanced technology for precision measurements. This book introduces the principles, applications, and signal processing of optical FMCW interference. The layout of this book is straightforward. Chapter 1 gives a short introduction to optical FMCW interferometry by considering the historical development, general concepts, and major advantages provided by this new technology. Chapter 2 focuses on the principles of optical FMCW interference. Three different versions of optical FMCW interference— sawtooth-wave optical FMCW interference, triangular-wave optical FMCW interference, and sinusoidal-wave optical FMCW interference—are discussed in detail. Moreover, multiple-beam optical FMCW interference and multip- wavelength optical FMCW interference are also discussed by this chapter.
"synopsis" may belong to another edition of this title.
Dr. Jesse Zheng has received two Ph.D. degrees in both Engineering and Physics. He has been researching optical frequency-modulated continuous-wave (FMCW) interferometry for about twenty years at four universities in three different countries. His knowledge and work experience encompass the areas of optics, electronics and computer science. His research interests focus on the principles, applications and signal processing of optical FMCW interference. He has given 50 scientific publications. This is his first monograph.
This book introduces the optical frequency-modulated continuous-wave (FMCW) interferometry - a new field of optics that is derived from radar. The study of optical FMCW interference not only updates our knowledge about the nature of light, but also creates an advanced technology for precision measurements. The principles, applications and signal processing of optical FMCW interference are systematically discussed. This book is intended for scientists and engineers in both academia and industry. It is especially suited to professionals who are working in the field of measurement instruments.
"About this title" may belong to another edition of this title.
US$ 20.10 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 11872073-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530293806
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 411. Seller Inventory # C9781441919977
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 11872073-n
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781441919977
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This book introduces the optical frequency-modulated continuous-wave (FMCW) interferometry - a new field of optics that is derived from radar. The study of optical FMCW interference not only updates our knowledge about the nature of light, but also creates an advanced technology for precision measurements. The principles, applications and signal processing of optical FMCW interference are systematically discussed. This book is intended for scientists and engineers in both academia and industry. It is especially suited to professionals who are working in the field of measurement instruments. Optical interference plays a prominent role in scientific discovery and modern technology. Historically, optical interference was instrumental in establishing the wave nature of light. Nowadays, optical interference continues to be of great importance in areas such as spectroscopy and metrology. Thus far, the physical optics literature has discussed the interference of optical waves with the same single frequency (i.e., homodyne interference) and the interference of optical waves with two different frequencies (i.e., heterodyne interference), but it hardly ever deals with the interference of optical waves whose frequencies are continuously modulated (i.e., frequency-modulated continuous-wave int- ference). Frequency-modulated continuous-wave (FMCW) interference, which was originally investigated in radar in the 1950s, has been recently introduced in optics. The study of optical FMCW interference not only updates our kno- edge about the nature of light but also creates a new advanced technology for precision measurements. This book introduces the principles, applications, and signal processing of optical FMCW interference. The layout of this book is straightforward. Chapter 1 gives a short introduction to optical FMCW interferometry by considering the historical development, general concepts, and major advantages provided by this new technology. Chapter 2 focuses on the principles of optical FMCW interference. Three different versions of optical FMCW interference- sawtooth-wave optical FMCW interference, triangular-wave optical FMCW interference, and sinusoidal-wave optical FMCW interference-are discussed in detail. Moreover, multiple-beam optical FMCW interference and multip- wavelength optical FMCW interference are also discussed by this chapter. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781441919977
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Optical interference plays a prominent role in scientific discovery and modern technology. Historically, optical interference was instrumental in establishing the wave nature of light. Nowadays, optical interference continues to be of great importance in areas such as spectroscopy and metrology. Thus far, the physical optics literature has discussed the interference of optical waves with the same single frequency (i.e., homodyne interference) and the interference of optical waves with two different frequencies (i.e., heterodyne interference), but it hardly ever deals with the interference of optical waves whose frequencies are continuously modulated (i.e., frequency-modulated continuous-wave int- ference). Frequency-modulated continuous-wave (FMCW) interference, which was originally investigated in radar in the 1950s, has been recently introduced in optics. The study of optical FMCW interference not only updates our kno- edge about the nature of light but also creates a new advanced technology for precision measurements. This book introduces the principles, applications, and signal processing of optical FMCW interference. The layout of this book is straightforward. Chapter 1 gives a short introduction to optical FMCW interferometry by considering the historical development, general concepts, and major advantages provided by this new technology. Chapter 2 focuses on the principles of optical FMCW interference. Three different versions of optical FMCW interference- sawtooth-wave optical FMCW interference, triangular-wave optical FMCW interference, and sinusoidal-wave optical FMCW interference-are discussed in detail. Moreover, multiple-beam optical FMCW interference and multip- wavelength optical FMCW interference are also discussed by this chapter. 268 pp. Englisch. Seller Inventory # 9781441919977
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 268. Seller Inventory # 263101215
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 268 137 Illus. Seller Inventory # 5828032
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Optical interference plays a prominent role in scientific discovery and modern technology. Historically, optical interference was instrumental in establishing the wave nature of light. Nowadays, optical interference continues to be of great importance in areas such as spectroscopy and metrology. Thus far, the physical optics literature has discussed the interference of optical waves with the same single frequency (i.e., homodyne interference) and the interference of optical waves with two different frequencies (i.e., heterodyne interference), but it hardly ever deals with the interference of optical waves whose frequencies are continuously modulated (i.e., frequency-modulated continuous-wave int- ference). Frequency-modulated continuous-wave (FMCW) interference, which was originally investigated in radar in the 1950s, has been recently introduced in optics. The study of optical FMCW interference not only updates our kno- edge about the nature of light but also creates a new advanced technology for precision measurements. This book introduces the principles, applications, and signal processing of optical FMCW interference. The layout of this book is straightforward. Chapter 1 gives a short introduction to optical FMCW interferometry by considering the historical development, general concepts, and major advantages provided by this new technology. Chapter 2 focuses on the principles of optical FMCW interference. Three different versions of optical FMCW interference¿ sawtooth-wave optical FMCW interference, triangular-wave optical FMCW interference, and sinusoidal-wave optical FMCW interference¿are discussed in detail. Moreover, multiple-beam optical FMCW interference and multip- wavelength optical FMCW interference are also discussed by this chapter.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. Seller Inventory # 9781441919977
Quantity: 2 available