This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat...
From the reviews:
"Have you ever wondered about whether one can define differential derivative of non integer order and how useful these fractal derivatives would be? If the answer is yes this is the book to look at. The book is written by physicists with a pragmatic audience in mind. It contains a very thorough and clearly written discussion of the mathematical foundation as well as the applications to...
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.14. Seller Inventory # G144193054XI4N00
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530294658
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441930545_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's equations of motion for providing a dynamical basis for the statistics of complex phenomena. The fractal functions are intended as possible models of certain complex phenomena; physical.systems that have long-time mem ory and/or long-range spatial interactions. Since fractal functions are non differentiable, those phenomena described by such functions do not have dif ferential equations of motion, but may have fractional-differential equations of motion. We argue that the traditional justification of statistieal mechan ics relies on aseparation between microscopic and macroscopie time scales. When this separation exists traditional statistieal physics results. When the microscopic time scales diverge and overlap with the macroscopie time scales, classieal statistieal mechanics is not applicable to the phenomenon described. In fact, it is shown that rather than the stochastic differential equations of Langevin describing such things as Brownian motion, we ob tain fractional differential equations driven by stochastic processes. 368 pp. Englisch. Seller Inventory # 9781441930545
Quantity: 2 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 549. Seller Inventory # C9781441930545
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's equations of motion for providing a dynamical basis for the statistics of complex phenomena. The fractal functions are intended as possible models of certain complex phenomena; physical.systems that have long-time mem ory and/or long-range spatial interactions. Since fractal functions are non differentiable, those phenomena described by such functions do not have dif ferential equations of motion, but may have fractional-differential equations of motion. We argue that the traditional justification of statistieal mechan ics relies on aseparation between microscopic and macroscopie time scales. When this separation exists traditional statistieal physics results. When the microscopic time scales diverge and overlap with the macroscopie time scales, classieal statistieal mechanics is not applicable to the phenomenon described. In fact, it is shown that rather than the stochastic differential equations of Langevin describing such things as Brownian motion, we ob tain fractional differential equations driven by stochastic processes. Seller Inventory # 9781441930545
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 363 pages. 9.25x6.10x0.83 inches. In Stock. Seller Inventory # x-144193054X
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as sys. Seller Inventory # 4173515
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9781441930545
Quantity: 10 available