Knowledge existing in modern information systems usually comes from many sources and is mapped in many ways. There is a real need for representing “knowledge pieces” as rather universal objects that should fit to multi-purpose a- ing systems. According to great number of information system’s tasks, knowledge representation is more or less detailed (e.g. some level of its granularity is - sumed). The main goal of this paper is to present chosen aspects of expressing granularity of knowledge implemented in intelligent systems. One of the main r- sons of granularity phenomena is diversification of knowledge sources, therefore the next section is devoted to this issue. 2. Heterogeneous Knowledge as a Source for Intelligent Systems Knowledge, the main element of so-called intelligent applications and systems, is very often heterogeneous. This heterogeneity concerns the origin of knowledge, its sources as well as its final forms of presentation. In this section the selected c- teria of knowledge differentiation will be presented, in the context of potential sources of knowledge acquisition. In Fig. 1 an environment of intelligent systems is shown, divided into different knowledge sources for the system. Fig. 1. Potential knowledge sources for intelligent information/reasoning system. Source: own elaboration based on (Mach, 2007) p. 24.
"synopsis" may belong to another edition of this title.
International Federation for Information Processing
The IFIP series publishes state-of-the-art results in the sciences and technologies of information and communication. The scope of the series includes: foundations of computer science; software theory and practice; education; computer applications in technology; communication systems; systems modeling and optimization; information systems; computers and society; computer systems technology; security and protection in information processing systems; artificial intelligence; and human-computer interaction. Proceedings and post-proceedings of refereed international conferences in computer science and interdisciplinary fields are featured. These results often precede journal publication and represent the most current research. The principal aim of the IFIP series is to encourage education and the dissemination and exchange of information about all aspects of computing.
For more information about the 300 other books in the IFIP series, please visit www.springer.com.
For more information about IFIP, please visit www.ifip.org.
"About this title" may belong to another edition of this title.
US$ 34.07 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781441946867
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530296123
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Knowledge existing in modern information systems usually comes from many sources and is mapped in many ways. There is a real need for representing 'knowledge pieces' as rather universal objects that should fit to multi-purpose a- ing systems. According to great number of information system's tasks, knowledge representation is more or less detailed (e.g. some level of its granularity is - sumed). The main goal of this paper is to present chosen aspects of expressing granularity of knowledge implemented in intelligent systems. One of the main r- sons of granularity phenomena is diversification of knowledge sources, therefore the next section is devoted to this issue. 2. Heterogeneous Knowledge as a Source for Intelligent Systems Knowledge, the main element of so-called intelligent applications and systems, is very often heterogeneous. This heterogeneity concerns the origin of knowledge, its sources as well as its final forms of presentation. In this section the selected c- teria of knowledge differentiation will be presented, in the context of potential sources of knowledge acquisition. In Fig. 1 an environment of intelligent systems is shown, divided into different knowledge sources for the system. Fig. 1. Potential knowledge sources for intelligent information/reasoning system. Source: own elaboration based on (Mach, 2007) p. 24. 280 pp. Englisch. Seller Inventory # 9781441946867
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 280. Seller Inventory # 263095760
Quantity: 4 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The papers in this volume were peer-reviewed and carefully selectedMuch information in this series is published in advance of journal publicationThe contributors in this volume are world-renowned experts in their fieldKnowledge exis. Seller Inventory # 4175018
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 280 24 Illus. Seller Inventory # 5800719
Quantity: 4 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441946867_new
Quantity: Over 20 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 280. Seller Inventory # 183095770
Quantity: 4 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 427. Seller Inventory # C9781441946867
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Knowledge existing in modern information systems usually comes from many sources and is mapped in many ways. There is a real need for representing ¿knowledge pieces¿ as rather universal objects that should fit to multi-purpose a- ing systems. According to great number of information system¿s tasks, knowledge representation is more or less detailed (e.g. some level of its granularity is - sumed). The main goal of this paper is to present chosen aspects of expressing granularity of knowledge implemented in intelligent systems. One of the main r- sons of granularity phenomena is diversification of knowledge sources, therefore the next section is devoted to this issue. 2. Heterogeneous Knowledge as a Source for Intelligent Systems Knowledge, the main element of so-called intelligent applications and systems, is very often heterogeneous. This heterogeneity concerns the origin of knowledge, its sources as well as its final forms of presentation. In this section the selected c- teria of knowledge differentiation will be presented, in the context of potential sources of knowledge acquisition. In Fig. 1 an environment of intelligent systems is shown, divided into different knowledge sources for the system. Fig. 1. Potential knowledge sources for intelligent information/reasoning system. Source: own elaboration based on (Mach, 2007) p. 24.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 280 pp. Englisch. Seller Inventory # 9781441946867
Quantity: 1 available