Items related to Cellular Neural Networks: Analysis, Design and Optimization

Cellular Neural Networks: Analysis, Design and Optimization - Softcover

 
9781441949882: Cellular Neural Networks: Analysis, Design and Optimization

Synopsis

Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. ANALOG chips are being developed for use in applications where sophisticated signal processing at low power consumption is required.
Signal processing via CNNs only becomes efficient if the network is implemented in analog hardware. In view of the physical limitations that analog implementations entail, robust operation of a CNN chip with respect to parameter variations has to be insured. By far not all mathematically possible CNN tasks can be carried out reliably on an analog chip; some of them are inherently too sensitive. This book defines a robustness measure to quantify the degree of robustness and proposes an exact and direct analytical design method for the synthesis of optimally robust network parameters. The method is based on a design centering technique which is generally applicable where linear constraints have to be satisfied in an optimum way.
Processing speed is always crucial when discussing signal-processing devices. In the case of the CNN, it is shown that the setting time can be specified in closed analytical expressions, which permits, on the one hand, parameter optimization with respect to speed and, on the other hand, efficient numerical integration of CNNs. Interdependence between robustness and speed issues are also addressed. Another goal pursued is the unification of the theory of continuous-time and discrete-time systems. By means of a delta-operator approach, it is proven that the same network parameters can be used for both of these classes, even if their nonlinear output functions differ.
More complex CNN optimization problems that cannot be solved analytically necessitate resorting to numerical methods. Among these, stochastic optimization techniques such as genetic algorithms prove their usefulness, for example in image classificationproblems. Since the inception of the CNN, the problem of finding the network parameters for a desired task has been regarded as a learning or training problem, and computationally expensive methods derived from standard neural networks have been applied. Furthermore, numerous useful parameter sets have been derived by intuition.
In this book, a direct and exact analytical design method for the network parameters is presented. The approach yields solutions which are optimum with respect to robustness, an aspect which is crucial for successful implementation of the analog CNN hardware that has often been neglected.
`This beautifully rounded work provides many interesting and useful results, for both CNN theorists and circuit designers.'
Leon O. Chua

"synopsis" may belong to another edition of this title.

Buy Used

Condition: As New
Unread book in perfect condition...
View this item

US$ 2.64 shipping within U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

9780792378914: Cellular Neural Networks: Analysis, Design and Optimization

Featured Edition

ISBN 10:  0792378911 ISBN 13:  9780792378914
Publisher: Springer, 2000
Hardcover

Search results for Cellular Neural Networks: Analysis, Design and Optimization

Seller Image

Hänggi, Martin; Moschytz, George S.
Published by Springer, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 11874081-n

Contact seller

Buy New

US$ 117.40
Convert currency
Shipping: US$ 2.64
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Hänggi, Martin; Moschytz, George S.
Published by Springer, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Softcover

Seller: Lucky's Textbooks, Dallas, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # ABLIING23Mar2411530296390

Contact seller

Buy New

US$ 116.06
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

George S. Moschytz
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Paperback First Edition

Seller: Grand Eagle Retail, Mason, OH, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: new. Paperback. Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. ANALOG chips are being developed for use in applications where sophisticated signal processing at low power consumption is required. Signal processing via CNNs only becomes efficient if the network is implemented in analog hardware. In view of the physical limitations that analog implementations entail, robust operation of a CNN chip with respect to parameter variations has to be insured. By far not all mathematically possible CNN tasks can be carried out reliably on an analog chip; some of them are inherently too sensitive. This book defines a robustness measure to quantify the degree of robustness and proposes an exact and direct analytical design method for the synthesis of optimally robust network parameters. The method is based on a design centering technique which is generally applicable where linear constraints have to be satisfied in an optimum way. Processing speed is always crucial when discussing signal-processing devices.In the case of the CNN, it is shown that the setting time can be specified in closed analytical expressions, which permits, on the one hand, parameter optimization with respect to speed and, on the other hand, efficient numerical integration of CNNs. Interdependence between robustness and speed issues are also addressed. Another goal pursued is the unification of the theory of continuous-time and discrete-time systems. By means of a delta-operator approach, it is proven that the same network parameters can be used for both of these classes, even if their nonlinear output functions differ. More complex CNN optimization problems that cannot be solved analytically necessitate resorting to numerical methods. Among these, stochastic optimization techniques such as genetic algorithms prove their usefulness, for example in image classification problems. Since the inception of the CNN, the problem of finding the network parameters for a desired task has been regarded as a learning or training problem, and computationally expensive methods derived from standard neural networks have been applied. Furthermore, numerous useful parameter sets have been derived by intuition.In this book, a direct and exact analytical design method for the network parameters is presented. The approach yields solutions which are optimum with respect to robustness, an aspect which is crucial for successful implementation of the analog CNN hardware that has often been neglected. 'This beautifully rounded work provides many interesting and useful results, for both CNN theorists and circuit designers.' Leon O. Chua Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781441949882

Contact seller

Buy New

US$ 134.49
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Hänggi, Martin; Moschytz, George S.
Published by Springer, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
Used Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 11874081

Contact seller

Buy Used

US$ 137.28
Convert currency
Shipping: US$ 2.64
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Hänggi, Martin; Moschytz, George S.
Published by Springer, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9781441949882_new

Contact seller

Buy New

US$ 129.29
Convert currency
Shipping: US$ 15.98
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Hänggi, Martin; Moschytz, George S.
Published by Springer, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 11874081-n

Contact seller

Buy New

US$ 129.27
Convert currency
Shipping: US$ 20.00
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

George S. Moschytz
Published by Springer US Okt 2010, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. ANALOG chips are being developed for use in applications where sophisticated signal processing at low power consumption is required. Signal processing via CNNs only becomes efficient if the network is implemented in analog hardware. In view of the physical limitations that analog implementations entail, robust operation of a CNN chip with respect to parameter variations has to be insured. By far not all mathematically possible CNN tasks can be carried out reliably on an analog chip; some of them are inherently too sensitive. This book defines a robustness measure to quantify the degree of robustness and proposes an exact and direct analytical design method for the synthesis of optimally robust network parameters. The method is based on a design centering technique which is generally applicable where linear constraints have to be satisfied in an optimum way. Processing speed is always crucial when discussing signal-processing devices. In the case of the CNN, it is shown that the setting time can be specified in closed analytical expressions, which permits, on the one hand, parameter optimization with respect to speed and, on the other hand, efficient numerical integration of CNNs. Interdependence between robustness and speed issues are also addressed. Another goal pursued is the unification of the theory of continuous-time and discrete-time systems. By means of a delta-operator approach, it is proven that the same network parameters can be used for both of these classes, even if their nonlinear output functions differ. More complex CNN optimization problems that cannot be solved analytically necessitate resorting to numerical methods. Among these, stochastic optimization techniques such as genetic algorithms prove their usefulness, for example in image classification problems. Since the inception of the CNN, the problem of finding the network parameters for a desired task has been regarded as a learning or training problem, and computationally expensive methods derived from standard neural networks have been applied. Furthermore, numerous useful parameter sets have been derived by intuition. In this book, a direct and exact analytical design method for the network parameters is presented. The approach yields solutions which are optimum with respect to robustness, an aspect which is crucial for successful implementation of the analog CNN hardware that has often been neglected. `This beautifully rounded work provides many interesting and useful results, for both CNN theorists and circuit designers.' Leon O. Chua 164 pp. Englisch. Seller Inventory # 9781441949882

Contact seller

Buy New

US$ 128.52
Convert currency
Shipping: US$ 26.82
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Hänggi, Martin; Moschytz, George S.
Published by Springer, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
Used Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 11874081

Contact seller

Buy Used

US$ 146.21
Convert currency
Shipping: US$ 20.00
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Martin Hänggi|George S. Moschytz
Published by Springer US, 2010
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. ANALOG chips are being developed for use in applications where sophisticated signal processing at. Seller Inventory # 4175315

Contact seller

Buy New

US$ 110.84
Convert currency
Shipping: US$ 57.13
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

George S. Moschytz
ISBN 10: 1441949887 ISBN 13: 9781441949882
New Taschenbuch
Print on Demand

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. ANALOG chips are being developed for use in applications where sophisticated signal processing at low power consumption is required.Signal processing via CNNs only becomes efficient if the network is implemented in analog hardware. In view of the physical limitations that analog implementations entail, robust operation of a CNN chip with respect to parameter variations has to be insured. By far not all mathematically possible CNN tasks can be carried out reliably on an analog chip; some of them are inherently too sensitive. This book defines a robustness measure to quantify the degree of robustness and proposes an exact and direct analytical design method for the synthesis of optimally robust network parameters. The method is based on a design centering technique which is generally applicable where linear constraints have to be satisfied in an optimum way.Processing speed is always crucial when discussing signal-processing devices. In the case of the CNN, it is shown that the setting time can be specified in closed analytical expressions, which permits, on the one hand, parameter optimization with respect to speed and, on the other hand, efficient numerical integration of CNNs. Interdependence between robustness and speed issues are also addressed. Another goal pursued is the unification of the theory of continuous-time and discrete-time systems. By means of a delta-operator approach, it is proven that the same network parameters can be used for both of these classes, even if their nonlinear output functions differ.More complex CNN optimization problems that cannot be solved analytically necessitate resorting to numerical methods. Among these, stochastic optimization techniques such as genetic algorithms prove their usefulness, for example in image classificationproblems. Since the inception of the CNN, the problem of finding the network parameters for a desired task has been regarded as a learning or training problem, and computationally expensive methods derived from standard neural networks have been applied. Furthermore, numerous useful parameter sets have been derived by intuition.In this book, a direct and exact analytical design method for the network parameters is presented. The approach yields solutions which are optimum with respect to robustness, an aspect which is crucial for successful implementation of the analog CNN hardware that has often been neglected.`This beautifully rounded work provides many interesting and useful results, for both CNN theorists and circuit designers.'Leon O. ChuaSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. Seller Inventory # 9781441949882

Contact seller

Buy New

US$ 128.52
Convert currency
Shipping: US$ 69.97
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

There are 3 more copies of this book

View all search results for this book