Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition) - Softcover

Book 48 of 86: Advances in Computer Vision and Pattern Recognition

Sucar, Luis Enrique

  • 4.33 out of 5 stars
    6 ratings by Goodreads
 
9781447170549: Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Synopsis

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.

"synopsis" may belong to another edition of this title.

From the Back Cover

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.

The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.

Topics and features:

  • Presents a unified framework encompassing all of the main classes of PGMs
  • Explores the fundamental aspects of representation, inference and learning for each technique
  • Describes the practical application of the different techniques
  • Examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models
  • Provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter
  • Suggests possible course outlines for instructors in the preface

This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9781447166986: Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Featured Edition

ISBN 10:  1447166981 ISBN 13:  9781447166986
Publisher: Springer, 2015
Hardcover