Arithmetic Geometry - Softcover

 
9781461386575: Arithmetic Geometry

Synopsis

This book is the result of a conference on arithmetic geometry, held July 30 through August 10, 1984 at the University of Connecticut at Storrs, the purpose of which was to provide a coherent overview of the subject. This subject has enjoyed a resurgence in popularity due in part to Faltings' proof of Mordell's conjecture. Included are extended versions of almost all of the instructional lectures and, in addition, a translation into English of Faltings' ground-breaking paper. ARITHMETIC GEOMETRY should be of great use to students wishing to enter this field, as well as those already working in it.

"synopsis" may belong to another edition of this title.

From the Back Cover

Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory.
A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry.
This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties.
The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thélène Peter Swinnerton Dyer and Paul Vojta.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9780387963112: Arithmetic Geometry

Featured Edition

ISBN 10:  0387963111 ISBN 13:  9780387963112
Publisher: Springer, 1986
Hardcover