This updated textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models.
"synopsis" may belong to another edition of this title.
This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill’s generalization of Tukey’s one degree of freedom for nonadditivity test.
Ronald Christensen is Professor of Statistics at the University of New Mexico, Fellow of the American Statistical Association (ASA) and the Institute of Mathematical Statistics, and former Chair of the ASA Section on Bayesian Statistical Science.
"About this title" may belong to another edition of this title.
Shipping:
US$ 15.90
From United Kingdom to U.S.A.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781461428855_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware -This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill's generalization of Tukey's one degree of freedom for nonadditivity test. 516 pp. Englisch. Seller Inventory # 9781461428855
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 4197861
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The author's emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas. Every chapter comes with numerous exercises and examples that make it ideal for a graduate-level course. All of the standard topics are covered in depth: ANOVA, estimation including Bayesian estimation, hypothesis testing, multiple comparisons, regression analysis, and experimental design models. In addition, the book covers topics that are not usually treated at this level, but which are important in their own right: balanced incomplete block designs, testing for lack of fit, testing for independence, models with singular covariance matrices, variance component estimation, best linear and best linear unbiased prediction, collinearity, and variable selection. This new edition includes a more extensive discussion of best prediction and associated ideas of R2, as well as new sections on inner products and perpendicular projections for more general spaces and Milliken and Graybill's generalization of Tukey's one degree of freedom for nonadditivity test. Seller Inventory # 9781461428855
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 813. Seller Inventory # C9781461428855
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 4th edition. 494 pages. 9.25x6.00x1.50 inches. In Stock. Seller Inventory # x-1461428858
Quantity: 2 available