Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using theapproaches presented in the book.
"synopsis" may belong to another edition of this title.
Radhakrishnan Nagarajan, Ph.D.
Dr. Nagarajan is an Associate Professor in the Division of Biomedical Informatics, Department of Biostatistics at the College of Public Health, University of Kentucky, Lexington, USA. His areas of research falls under evidence-based science that demands knowledge discovery from high-dimensional molecular and observational healthcare data sets using a combination of statistical algorithms, machine learning and network science approaches.
Contact: Division of Biomedical Informatics/Department of Biostatistics, College of Public Health, University of Kentucky, 725 Rose Street, MDS 230F, Lexington, KY 40536-0082.
Marco Scutari, Ph.D.
Dr. Scutari studied Statistics and Computer Science at the University of Padova, Italy. He earned his Ph.D. in Statistics in Padova under the guidance of Prof. A. Brogini, studying graphical model learning. He is now Research Associate at the Genetics Institute, University College London (UCL). His research focuses on the theoretical properties of Bayesian networks and their applications to biological data, and he is the author and maintainer of the bnlearn R package.
Contact: Genetics Institute, University College London Darwin Building, Room 212 London, WC1E 6BT United Kingdom.
Sophie Lèbre, Ph.D.
Dr. Lèbre is a Lecturer in the Department of Computer Science at the University of Strasbourg, France.
She originally earned her Ph.D. in Applied Mathematics at the University of Evry-val-d'Essone (France) under the guidance of Prof. B. Prum. Her research focuses on graphical modeling and dynamic Bayesian network inference, devoted to recovering genetic interaction networks from post genomic data. She is the author and maintainer of the G1DBN and the ARTIVA R packages for dynamic Bayesian network inference.
Contact: LSIIT, Equipe BFO, Pôle API, Bd Sébastien Brant - BP 10413, F -67412 Illkirch CEDEX, France.
Contact: Division of Biomedical Informatics/Department of Biostatistics, College of Public Health, University of Kentucky, 725 Rose Street, MDS 230F, Lexington, KY 40536-0082.
Bayesian Networks in R with Applications in Systems Biology introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is gradually increased across the chapters with exercises and solutions for enhanced understanding and hands-on experimentation of key concepts. Applications focus on systems biology with emphasis on modeling pathways and signaling mechanisms from high throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regards as exemplified by their ability to discover new associations while validating known ones. It is also expected that the prevalence of publicly available high-throughput biological and healthcare data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.
"About this title" may belong to another edition of this title.
US$ 4.00 shipping within U.S.A.
Destination, rates & speedsSeller: Powell's Bookstores Chicago, ABAA, Chicago, IL, U.S.A.
Condition: Used - Very Good. Pap. Minor shelf wear. Top corner of front wrap creased. Else a bright, clean copy. Very Good. Seller Inventory # Sact00404
Quantity: 1 available
Seller: Goodwill of Colorado, COLORADO SPRINGS, CO, U.S.A.
paperback. Condition: Good. This item is in overall good condition. Covers and dust jackets are intact but may have minor wear including slight curls or bends to corners as well as cosmetic blemishes including stickers. Pages are intact but may have minor highlighting/ writing. Binding is intact; however, spine may have slight wear overall. Digital codes may not be included and have not been tested to be redeemable and/or active. Minor shelf wear overall. Please note that all items are donated goods and are in used condition. Orders shipped Monday through Friday! Your purchase helps put people to work and learn life skills to reach their full potential. Orders shipped Monday through Friday. Your purchase helps put people to work and learn life skills to reach their full potential. Thank you! Seller Inventory # 466SUS003HN3
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_429540141
Quantity: 1 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00083174488
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 19194701
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 19194701-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030036971
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9781461464457
Quantity: 10 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 19194701-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In English. Seller Inventory # ria9781461464457_new
Quantity: Over 20 available