These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP.Topics in this volume evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data.Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
"synopsis" may belong to another edition of this title.
From the book reviews:
“This book reflects the progress made in GP during recent years. It covers a large range of up-to-date applications and theoretical issues. All of the papers are valuable and are recommended reading for AI scientists or novices.” (Svetlana Segarceanu, Computing Reviews, July, 2014)
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want