This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications.
Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable.
Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.
"synopsis" may belong to another edition of this title.
Jean-Michel Marin is Professor of Statistics at Université Montpellier 2, France, and Head of the Mathematics and Modelling research unit. He has written over 40 papers on Bayesian methodology and computing, as well as worked closely with population geneticists over the past ten years.
Christian Robert is Professor of Statistics at Université Paris-Dauphine, France. He has written over 150 papers on Bayesian Statistics and computational methods and is the author or co-author of seven books on those topics, including The Bayesian Choice (Springer, 2001), winner of the ISBA DeGroot Prize in 2004. He is a Fellow of the Institute of Mathematical Statistics, the Royal Statistical Society and the American Statistical Society. He has been co-editor of the Journal of the Royal Statistical Society, Series B, and in the editorial boards of the Journal of the American Statistical Society, the Annals of Statistics, Statistical Science, and Bayesian Analysis. He is also a recipient of an Erskine Fellowship from the University of Canterbury (NZ) in 2006 and a senior member of the Institut Universitaire de France (2010-2015).
This text focuses on the process of Bayesian analysis by integrating Bayesian theory, methods and computing to solve real data applications. Remarkably it accomplishes this in a straightforward, easy-to-understand manner. It starts with an introduction to Bayesian methods in simple normal models and ends with sophisticated applications in image analysis. Each chapter includes real data applications and extensive R code implementing the methods, all of which is included in the associated R package bayess. The text is ideally suited for use as an introduction to Bayesian methods and computing in undergraduate classes.
- Galin Jones, School of Statistics, University of Minnesota
Bayesian Essentials can be split in two parts: i) basic linear and generalized linear models, after a concise and useful introduction to the related R package, and ii) more advanced modeling structures, such as mixtures, time series and image analysis. For graduate students this book will be useful when reading chapters or sections and then running the accompanying R package bayess.-Hedibert Freitas Lopes, Professor of Statistics and Econometrics, INSPER Institute of Education and Research
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: SecondSale, Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00074928554
Quantity: 1 available
Seller: Seattle Goodwill, Seattle, WA, U.S.A.
hardcover. Condition: Good. May have some shelf-wear due to normal use. Your purchase funds free job training and education in the greater Seattle area. Thank you for supporting Goodwill's nonprofit mission! Seller Inventory # 0KVOV900ELIP_ns
Quantity: 1 available
Seller: Anybook.com, Lincoln, United Kingdom
Condition: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,700grams, ISBN:9781461486862. Seller Inventory # 3943859
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 20273799-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030037520
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In English. Seller Inventory # ria9781461486862_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 20273799-n
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781461486862
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications.Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable.Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. 312 pp. Englisch. Seller Inventory # 9781461486862
Quantity: 2 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 631. Seller Inventory # C9781461486862
Quantity: Over 20 available