Preface. Acknowledgements. Part One: Global Optimization Algorithms as Decision Procedures. Theoretical Background and Core Univariate Case. 1. Introduction. 2. Global Optimization Algorithms as Statistical Decision Procedures - The Information Approach. 3. Core Global Search Algorithm and Convergence Study. 4. Global Optimization Methods as Bounding Procedures - The Geometric Approach. Part Two: Generalizations for Parallel Computing, Constrained and Multiple Criteria Problems. 5. Parallel Global Optimization Algorithms and Evaluation of the Efficiency of Parallelism. 6. Global Optimization under Non-Convex Constraints - The Index Approach. 7. Algorithms for Multiple Criteria Multiextremal Problems. Part Three: Global Optimization in Many Dimensions. Generalizations through Peano Curves. 8. Peano-Type Space-Filling Curves as Means for Multivariate Problems. 9. Multidimensional Parallel Algorithms. 10. Multiple Peano Scannings and Multidimensional Problems. References. List of Algorithms. List of Figures. List of Tables. Index.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want