Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.
This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically:
· At the single nanoparticle level, how well do experimental and classical electrodynamics agree?
· What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?
· Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this?
· Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?
· Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?
"synopsis" may belong to another edition of this title.
Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.
This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically:
· At the single nanoparticle level, how well do experimental and classical electrodynamics agree?
· What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?
· Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this?
· Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?
· Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?
"About this title" may belong to another edition of this title.
US$ 20.29 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 27381259-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030186676
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 214. Seller Inventory # 26378357594
Quantity: 4 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781493951871_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9781493951871
Quantity: 10 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 27381259-n
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 214. Seller Inventory # 385546373
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: At the single nanoparticle level, how well do experimental and classical electrodynamics agree What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties 216 pp. Englisch. Seller Inventory # 9781493951871
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. - Prize-awarded thesis - New research in an emerging field - Interdisciplinary applications for chemistry, physics, and materials scienceInterest in structures with nanometer-length features has significantly increased as experimental techniques for . Seller Inventory # 447956289
Quantity: Over 20 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 214. Seller Inventory # 18378357584
Quantity: 4 available