Items related to Approximability of Optimization Problems through Adiabatic...

Approximability of Optimization Problems through Adiabatic Quantum Computation (Synthesis Lectures on Quantum Computing, 9) - Softcover

 
9781627055567: Approximability of Optimization Problems through Adiabatic Quantum Computation (Synthesis Lectures on Quantum Computing, 9)

Synopsis

The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrodinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2n × 2n, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms.

Table of Contents: Preface / Acknowledgments / Introduction / Approximability of NP-hard Problems / Adiabatic Quantum Computing / Efficient Hamiltonian Construction / AQC for Pseudo-Boolean Optimization / A General Strategy to Solve NP-Hard Problems / Conclusions / Bibliography / Authors' Biographies

"synopsis" may belong to another edition of this title.

About the Author

CU UAEM Valle de Chalco, Universidad Autónoma del Estado de México, México

"About this title" may belong to another edition of this title.

Buy Used

Condition: Good
Good
View this item

US$ 33.63 shipping from United Kingdom to U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

9783031013911: Approximability of Optimization Problems through Adiabatic Quantum Computation (Synthesis Lectures on Quantum Computing)

Featured Edition

ISBN 10:  3031013913 ISBN 13:  9783031013911
Publisher: Springer, 2014
Softcover

Search results for Approximability of Optimization Problems through Adiabatic...

Stock Image

Cruz-Santos, William, Morales-Luna, Guillermo
Published by Morgan & Claypool Publishers, 2014
ISBN 10: 1627055568 ISBN 13: 9781627055567
Used paperback

Seller: Mispah books, Redhill, SURRE, United Kingdom

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

paperback. Condition: Good. Good. book. Seller Inventory # ERICA82916270555683

Contact seller

Buy Used

US$ 138.55
Convert currency
Shipping: US$ 33.63
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket