This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.
"synopsis" may belong to another edition of this title.
Dr. Stephan Mescher is a Research Fellow at the University of Leipzig. He graduated with a degree in Mathematics from Bielefeld University in 2008 and obtained his Ph.D. at the University of Leipzig in 2017, supervised by Prof. Matthias Schwarz.
"About this title" may belong to another edition of this title.
Shipping:
US$ 26.12
From Germany to U.S.A.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A -algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A -categories for closed oriented manifolds involving families of Morse functions. To make A -structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory. 200 pp. Englisch. Seller Inventory # 9783030095260
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A -algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A -categories for closed oriented manifolds involving families of Morse functions. To make A -structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory. Seller Inventory # 9783030095260
Quantity: 1 available
Seller: dsmbooks, Liverpool, United Kingdom
Paperback. Condition: New. New. book. Seller Inventory # D7F7-3-M-3030095266-6
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces a self-contained discussion of an aspect of Morse theory that has remained largely overlookedIncludes an accessible introduction to a part of Morse theory that is closely related to algebraic topologyOffers a useful preparation f. Seller Inventory # 448672308
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 200 pages. 9.25x6.10x0.46 inches. In Stock. Seller Inventory # __3030095266
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 200 pages. 9.25x6.10x0.46 inches. In Stock. Seller Inventory # 3030095266
Quantity: 1 available