Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids (Shock Wave and High Pressure Phenomena) - Hardcover

Book 21 of 27: Shock Wave and High Pressure Phenomena

Clayton, John D.

 
9783030153298: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids (Shock Wave and High Pressure Phenomena)

Synopsis

This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline.

The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.


"synopsis" may belong to another edition of this title.

About the Author

Dr. John D. Clayton has over fifteen years of experience with advanced constitutive modeling and numerical simulation of crystalline solids subjected to dynamic and high-pressure loading.  He has worked as a research scientist and team leader in the Impact Physics Branch of the U.S. Army Research Laboratory in Aberdeen, Maryland since 2003.  He has served on the teaching faculty at the University of Maryland, College Park since 2015.  Dr. Clayton earned a Ph.D. from the Georgia Institute of Technology in 2002 and was a visiting scientist at the Courant Institute of Mathematical Sciences and at Columbia University in 2016.  He is an elected fellow of both the U.S. Army Research Laboratory and the American Society of Mechanical Engineers.

From the Back Cover

This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline.


The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9783030153328: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids (Shock Wave and High Pressure Phenomena)

Featured Edition

ISBN 10:  3030153320 ISBN 13:  9783030153328
Publisher: Springer, 2020
Softcover