This textbook provides an introduction to probabilistic reliability analysis of power systems. It discusses a range of probabilistic methods used in reliability modelling of power system components, small systems and large systems. It also presents the benefits of probabilistic methods for modelling renewable energy sources. The textbook describes real-life studies, discussing practical examples and providing interesting problems, teaching students the methods in a thorough and hands-on way.
The textbook has chapters dedicated to reliability models for components (reliability functions, component life cycle, two-state Markov model, stress-strength model), small systems (reliability networks, Markov models, fault/event tree analysis) and large systems (generation adequacy, state enumeration, Monte-Carlo simulation). Moreover, it contains chapters about probabilistic optimal power flow, the reliability of underground cables and cyber-physical power systems.
After reading this book, engineering students will be able to apply various methods to model the reliability of power system components, smaller and larger systems. The textbook will be accessible to power engineering students, as well as students from mathematics, computer science, physics, mechanical engineering, policy & management, and will allow them to apply reliability analysis methods to their own areas of expertise.
"synopsis" may belong to another edition of this title.
This textbook provides an introduction to probabilistic reliability analysis of power systems. It discusses a range of probabilistic methods used in reliability modelling of power system components, small systems and large systems. It also presents the benefits of probabilistic methods for modelling renewable energy sources. The textbook describes real-life studies, discussing practical examples and providing interesting problems, teaching students the methods in a thorough and hands-on way.
The textbook has chapters dedicated to reliability models for components (reliability functions, component life cycle, two-state Markov model, stress-strength model), small systems (reliability networks, Markov models, fault/event tree analysis) and large systems (generation adequacy, state enumeration, Monte-Carlo simulation). Moreover, it contains chapters about probabilistic optimal power flow, the reliability of underground cables and cyber-physical power systems.
After reading this book, engineering students will be able to apply various methods to model the reliability of power system components, smaller and larger systems. The textbook will be accessible to power engineering students, as well as students from mathematics, computer science, physics, mechanical engineering, policy & management, and will allow them to apply reliability analysis methods to their own areas of expertise.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsUS$ 6.70 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 43210152
Quantity: 1 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # GB-9783030435004
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 43210152-n
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020017654
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. This textbook provides an introduction to probabilistic reliability analysis of power systems. It discusses a range of probabilistic methods used in reliability modelling of power system components, small systems and large systems. It also presents the benefits of probabilistic methods for modelling renewable energy sources. The textbook describes real-life studies, discussing practical examples and providing interesting problems, teaching students the methods in a thorough and hands-on way.The textbook has chapters dedicated to reliability models for components (reliability functions, component life cycle, two-state Markov model, stress-strength model), small systems (reliability networks, Markov models, fault/event tree analysis) and large systems (generation adequacy, state enumeration, Monte-Carlo simulation). Moreover, it contains chapters about probabilistic optimal power flow, the reliability of underground cables and cyber-physical power systems.After reading this book, engineering students will be able to apply various methods to model the reliability of power system components, smaller and larger systems. The textbook will be accessible to power engineering students, as well as students from mathematics, computer science, physics, mechanical engineering, policy & management, and will allow them to apply reliability analysis methods to their own areas of expertise. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783030435004
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783030435004_new
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 43210152-n
Quantity: 1 available
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. 2020 ed. This textbook provides an introduction to probabilistic reliability analysis of power systems. It discusses a range of probabilistic methods used in reliability modelling of power system components, small systems and large systems. It also presents the benefits of probabilistic methods for modelling renewable energy sources. The textbook describes real-life studies, discussing practical examples and providing interesting problems, teaching students the methods in a thorough and hands-on way.The textbook has chapters dedicated to reliability models for components (reliability functions, component life cycle, two-state Markov model, stress-strength model), small systems (reliability networks, Markov models, fault/event tree analysis) and large systems (generation adequacy, state enumeration, Monte-Carlo simulation). Moreover, it contains chapters about probabilistic optimal power flow, the reliability of underground cables and cyber-physical power systems.After reading this book, engineering students will be able to apply various methods to model the reliability of power system components, smaller and larger systems. The textbook will be accessible to power engineering students, as well as students from mathematics, computer science, physics, mechanical engineering, policy and management, and will allow them to apply reliability analysis methods to their own areas of expertise. Seller Inventory # LU-9783030435004
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 43210152
Quantity: 1 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Seller Inventory # V9783030435004
Quantity: 1 available