This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.
"synopsis" may belong to another edition of this title.
Xiaoshi Zhong received his bachelor degree in computer science from Beihang University (BUAA), China, and his doctoral degree in computer science from Nanyang Technological University (NTU), Singapore. After a short period as a research fellow in NTU, he will join Beijing Institute of Technology (BIT), China, as an Assistant Professor in the School of Computer Science and Technology. His research interests mainly include data analytics, computational linguistics, and natural language processing.
Erik Cambria is the Founder of SenticNet, a Singapore-based company offering B2B sentiment analysis services, and an Associate Professor at NTU, where he also holds the appointment of Provost Chair in Computer Science and Engineering. Prior to joining NTU, he worked at Microsoft Research Asia and HP Labs India and earned his PhD through a joint programme between the University of Stirling and MIT Media Lab. Erik is recipient of many awards, e.g., the 2018 AI's 10 to Watch and the 2019 IEEE Outstanding Early Career award, and is often featured in the news, e.g., Forbes. He is Associate Editor of several journals, e.g., NEUCOM, INFFUS, KBS, IEEE CIM and IEEE Intelligent Systems (where he manages the Department of Affective Computing and Sentiment Analysis), and is involved in many international conferences as PC member, program chair, and speaker.
This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 44760604-n
Quantity: 15 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783030789633
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLING22Oct2817100391362
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use. This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783030789633
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783030789633_new
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 44760604
Quantity: 15 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783030789633
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use. 116 pp. Englisch. Seller Inventory # 9783030789633
Quantity: 2 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a synthetic analysis about the characteristics of timexes and entitiesReports the latest findings on recognizing timexes and entities from unstructured textOpens a door to examine whether multiple joint tasks enhance each other und. Seller Inventory # 668445020
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26396371764
Quantity: 4 available