This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision.
Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
"synopsis" may belong to another edition of this title.
Ke Chen received his B.Sc., M.Sc. and Ph.D. degrees in Applied Mathematics, respectively, from the Dalian University of Technology (China), University of Manchester (UK) and University of Plymouth (UK). Dr. Chen is a computational mathematician specialised in developing novel and fast numerical algorithms for various scientific computing (especially imaging) applications. He has been the Director of a Multidisciplinary Research Centre for Mathematical Imaging Techniques (CMIT) since 2007, and the Director of the EPSRC Liverpool Centre of Mathematics in Healthcare (LCMH) since 2015. He heads a large group of computational imagers, tackling novel analysis of real-life images. His group’s imaging work in variational modelling and algorithmic development is mostly interdisciplinary, strongly motivated by emerging real-life problems and their challenges: image restoration, image inpainting, tomography, image segmentation and registration.
Her research has been acknowledged by scientific prizes, among them the LMS Whitehead Prize 2016,the Philip Leverhulme Prize in 2017, the Calderon Prize 2019, a Royal Society Wolfson fellowship in 2020, a doctorate honoris causa from the University of Klagenfurt in 2022, and by invitations to give plenary lectures at several renowned applied mathematics conferences, among them the SIAM conference on Imaging Science in 2014, the SIAM conference on Partial Differential Equations in 2015, the SIAM annual meeting in 2017, the Applied Inverse Problems Conference in 2019, the FOCM 2020 and the GAMM 2021.
Carola graduated from the Institute for Mathematics, University of Salzburg (Austria) in 2004. From 2004 to 2005 she held a teaching position in Salzburg. She received her PhD degree from the University of Cambridge (UK) in 2009. After one year of postdoctoral activity at the University of Göttingen (Germany), she became a Lecturer at Cambridge in 2010, promoted to Reader in 2015 and promoted to Professor in 2018."About this title" may belong to another edition of this title.
US$ 56.60 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: moluna, Greven, Germany
Condition: New. Seller Inventory # 564799859
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This handbook gathers together the state of the art onmathematical modelsand algorithms for imaging and vision. Its emphasis lies onrigorous mathematicalmethods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, andnonlinearoptimization, and provides the basis of high-resolution imaging throughgeometry andvariational models. Besides,optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning.No other framework can provide comparable accuracy and precision to imaging and vision.Written by leading researchers in imaging andvision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists. 2064 pp. Englisch. Seller Inventory # 9783030986605
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This handbook gathers together the state of the art onmathematical modelsand algorithms for imaging and vision. Its emphasis lies onrigorous mathematicalmethods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, andnonlinearoptimization, and provides the basis of high-resolution imaging throughgeometry andvariational models. Besides,optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning.No other framework can provide comparable accuracy and precision to imaging and vision.Written by leading researchers in imaging andvision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists. Seller Inventory # 9783030986605
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision.Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 2064 pp. Englisch. Seller Inventory # 9783030986605
Quantity: 2 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Hardcover. Condition: new. Hardcover. This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision.Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783030986605
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2010 pages. 9.25x6.10x4.65 inches. In Stock. Seller Inventory # x-3030986608
Quantity: 1 available