Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples.
In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.
"synopsis" may belong to another edition of this title.
Shay Cohen is a Lecturer at the Institute for Language, Cognition and Computation at the School of Informatics at the University of Edinburgh. He received his Ph.D. in Language Technologies from Carnegie Mellon University (2011), his M.Sc. in Computer Science fromTel-Aviv University (2004) and his B.Sc. in Mathematics and Computer Science from Tel-Aviv University (2000). He was awarded a Computing Innovation Fellowship for his postdoctoral studies at Columbia University (2011–2013) and a Chancellors Fellowship in Edinburgh (2013–2018). His research interests are in natural language processing and machine learning, with a focus on problems in structured prediction, such as syntactic and semantic parsing.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 44571156-n
Quantity: Over 20 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEOCT25-234788
Quantity: 1 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-277213
Quantity: 1 available
Seller: SMASS Sellers, IRVING, TX, U.S.A.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-277213
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 44571156
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 2nd edition NO-PA16APR2015-KAP. Seller Inventory # 26394683710
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 401726177
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020035057
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783031010422
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples.In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783031010422
Quantity: 1 available