Items related to Machine Learning for Data Science Handbook: Data Mining...

Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook - Softcover

 
9783031246302: Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook

Synopsis

This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook.  Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced.  The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students’ feedback.

This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications.  It covers all the crucial important machine learning methods used in data science.

Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role.

This handbook aims to serve as the main reference for researchers in the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering.  Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference.

"synopsis" may belong to another edition of this title.

About the Author

Prof. Oded Maimon is the Oracle chaired Professor at Tel-Aviv University, Previously at MIT. Oded is a leader expert in the field of data mining and knowledge discovery. He published many articles on new algorithms and seven significant award winning books in the field since 2000. He has also developed and implemented successful applications in the Industry. He heads an international research group sponsored by European Union awards.

Dr. Lior Rokach is a senior lecturer at the Department of Information System Engineering at Ben-Gurion University. He is a recognized expert in intelligent information systems and has held several leading positions in this field. His main areas of interest are Data Mining, Pattern Recognition, and Recommender Systems. Dr. Rokach is the author of over 70 refereed papers in leading journals, conference proceedings and book chapters. In addition he has authored six books and edited three others books.

From the Back Cover

This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook.  Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced.  The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students’ feedback.

This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications.  It covers all the crucial important machine learning methods used in data science.

Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role.

This handbook aims to serve as the main reference for researchers in the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering.  Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference.

"About this title" may belong to another edition of this title.

Buy Used

Zustand: Hervorragend | Seiten:...
View this item

US$ 51.87 shipping from Germany to U.S.A.

Destination, rates & speeds

Buy New

View this item

US$ 26.51 shipping from Germany to U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

9783031246272: Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook

Featured Edition

ISBN 10:  3031246276 ISBN 13:  9783031246272
Publisher: Springer, 2023
Hardcover

Search results for Machine Learning for Data Science Handbook: Data Mining...

Stock Image

Unbekannt
Published by Springer, 2024
ISBN 10: 3031246306 ISBN 13: 9783031246302
Used Softcover

Seller: Buchpark, Trebbin, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Hervorragend. Zustand: Hervorragend | Seiten: 992 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 42800246/1

Contact seller

Buy Used

US$ 158.86
Convert currency
Shipping: US$ 51.87
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Lior Rokach
ISBN 10: 3031246306 ISBN 13: 9783031246302
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook. Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced. The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students' feedback.This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications. It covers all the crucial important machine learning methods used in data science.Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role.This handbook aims to serve as the main reference for researchersin the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering.Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference. 996 pp. Englisch. Seller Inventory # 9783031246302

Contact seller

Buy New

US$ 355.67
Convert currency
Shipping: US$ 26.51
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Lior Rokach
ISBN 10: 3031246306 ISBN 13: 9783031246302
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook. Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced. The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students' feedback.This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications. It covers all the crucial important machine learning methods used in data science.Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role.This handbook aims to serve as the main reference for researchersin the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering.Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference. Seller Inventory # 9783031246302

Contact seller

Buy New

US$ 355.67
Convert currency
Shipping: US$ 40.77
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Lior Rokach
ISBN 10: 3031246306 ISBN 13: 9783031246302
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook. Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced. The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students¿ feedback.This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications. It covers all the crucial important machine learning methods used in data science.Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role.This handbook aims to serve as the main reference for researchers in the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering. Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 996 pp. Englisch. Seller Inventory # 9783031246302

Contact seller

Buy New

US$ 355.67
Convert currency
Shipping: US$ 63.39
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket