This book presents data mining methods in the field of healthcare management in a practical way. Healthcare quality and disease prevention are essential in today’s world. Healthcare management faces a number of challenges, e.g. reducing patient growth through disease prevention, stopping or slowing disease progression, and reducing healthcare costs while improving quality of care. The book provides an overview of current healthcare management problems and highlights how analytics and knowledge management have been used to better cope with them. It then demonstrates how to use descriptive and predictive analytics tools to help address these challenges. In closing, it presents applications of software solutions in the context of healthcare management.
Given its scope, the book will appeal to a broad readership, from researchers and students in the operations research and management field to practitioners such as data analysts and decision-makers who work in the healthcare sector.
"synopsis" may belong to another edition of this title.
David L. Olson is the James & H.K. Stuart Professor in MIS and Chancellor’s Professor at the University of Nebraska-Lincoln, USA. He has published research in over 200 refereed journal articles and has authored over 40 books. He has served as associate editor of a number of journals and made hundreds of presentations at international and national conferences on research topics. He is a member of the Decision Sciences Institute, the Institute for Operations Research and Management Sciences, and the Multiple Criteria Decision Making Society. He was a Lowry Mays endowed Professor at Texas A&M University from 1999 to 2001. He was named Best Enterprise Information Systems Educator by the IFIP in 2006. He is a Fellow of the Decision Sciences Institute.
Dr. Özgür Araz is the Ron and Carol Cope Professor and Professor of Supply Chain Management and Analytics at the University of Nebraska-Lincoln, USA. His research interests include systems simulation, business analytics, healthcare operations and public health informatics. His research has been supported by the NIH, Veterans Engineering Resource Center (VERC), HDR company, Boys Town of Nebraska, Nebraska Medicine and the University of Nebraska. Before joining the College of Business at UNL, he served at the College of Public Health at the University of Nebraska Medical Center (UNMC). He received his Ph.D. in Industrial Engineering from Arizona State University and was a postdoctoral research fellow at the Center for Computational Biology and Bioinformatics of the University of Texas at Austin. He is an editorial advisory board member of the Transportation Research Part E and also serves as associate editor for Decision Sciences and IISE Transactions on Healthcare Systems Engineering. He is the Public Health Informatics Area Editor for the journal Health Systems. He is also a faculty fellow of the Nebraska Governance and Technology Center and Daugherty Water for Food Global Institute.
This book presents data mining methods in the field of healthcare management in a practical way. Healthcare quality and disease prevention are essential in today’s world. Healthcare management faces a number of challenges, e.g. reducing patient growth through disease prevention, stopping or slowing disease progression, and reducing healthcare costs while improving quality of care. The book provides an overview of current healthcare management problems and highlights how analytics and knowledge management have been used to better cope with them. It then demonstrates how to use descriptive and predictive analytics tools to help address these challenges. In closing, it presents applications of software solutions in the context of healthcare management.
Given its scope, the book will appeal to a broad readership, from researchers and students in the operations research and management field to practitioners such as data analysts and decision-makers who work in the healthcare sector.
"About this title" may belong to another edition of this title.
US$ 4.99 shipping within U.S.A.
Destination, rates & speedsSeller: Books From California, Simi Valley, CA, U.S.A.
hardcover. Condition: Good. Cover boards are lightly warping. Otherwise shows minimal shelf wear. Pages are clean, text and pictures are intact and unmarred. Seller Inventory # mon0003645696
Quantity: 1 available
Seller: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Hardcover. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Seller Inventory # G3031281128I4N00
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783031281129
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. This book presents data mining methods in the field of healthcare management in a practical way. Healthcare quality and disease prevention are essential in todays world. Healthcare management faces a number of challenges, e.g. reducing patient growth through disease prevention, stopping or slowing disease progression, and reducing healthcare costs while improving quality of care. The book provides an overview of current healthcare management problems and highlights how analytics and knowledge management have been used to better cope with them. It then demonstrates how to use descriptive and predictive analytics tools to help address these challenges. In closing, it presents applications of software solutions in the context of healthcare management. Given its scope, the book will appeal to a broad readership, from researchers and students in the operations research and management field to practitioners such as data analysts and decision-makers who work in the healthcare sector. This book presents data mining methods in the field of healthcare management in a practical way. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783031281129
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 45848917-n
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 45848917
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783031281129_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 45848917-n
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26396027829
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents data mining methods in the field of healthcare management in a practical way. Healthcare quality and disease prevention are essential in today's world. Healthcare management faces a number of challenges, e.g. reducing patient growth through disease prevention, stopping or slowing disease progression, and reducing healthcare costs while improving quality of care. The book provides an overview of current healthcare management problems and highlights how analytics and knowledge management have been used to better cope with them. It then demonstrates how to use descriptive and predictive analytics tools to help address these challenges. In closing, it presents applications of software solutions in the context of healthcare management. Given its scope, the book will appeal to a broad readership, from researchers and students in the operations research and management field to practitioners such as data analysts and decision-makers who work in the healthcare sector. 204 pp. Englisch. Seller Inventory # 9783031281129
Quantity: 2 available