Items related to Neural Networks and Deep Learning: A Textbook

Neural Networks and Deep Learning: A Textbook - Softcover

  • 4.30 out of 5 stars
    46 ratings by Goodreads
 
9783031296444: Neural Networks and Deep Learning: A Textbook

Synopsis

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:

 

The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2.

Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.

 

Fundamentals of neural networks:  A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.

 

Advanced topics in neural networks:  Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neural networks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.

 

The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.

Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.

Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.


"synopsis" may belong to another edition of this title.

About the Author

Charu C. Aggarwal is a Distinguished Research Staff Member(DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has worked extensively in the field of data mining. He has published more than 400 papers in refereed conferences and journals and authored over 80 patents. He is the author or editor of 20 books, including textbooks on data mining, recommender systems, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, and a recipient of two IBM Outstanding Technical AchievementAwards (2009, 2015) for his work on data streams/high-dimensional data. He received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He is a recipient of the IEEE ICDM Research Contributions Award (2015) and ACM SIGKDD Innovation Award, which are the two most prestigious awards for influential research contributions in the field of data mining. He is also a recipient of the W. Wallace McDowell Award, which is the highest award given solely by the IEEE Computer Society across the field of Computer Science.

He has served as the general co-chair of the IEEE Big Data Conference (2014) and as the program co-chair of the ACM CIKM Conference (2015), the IEEE ICDM Conference (2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the IEEE Transactions on Big Data, an action editor of the DataMining and Knowledge Discovery Journal, and an associate editor of the Knowledge and Information System Journal. He has served or currently serves as the editor-in-chief of the ACM Transactions on Knowledge Discovery from Data as well as the ACM SIGKDD Explorations. He is also an editor-in-chief of ACM Books. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining and is a member of the SIAM industry committee. He is a fellow of the SIAM, ACM, and the IEEE, for “contributions to knowledge discovery and data mining algorithms.

From the Back Cover

This book covers both classical and modern models in deep learning. The chapters of this book span three categories:

1. The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2. Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.

2. Fundamentals of neural networks:  A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.

3. Advanced topics in neural networks:  Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neuralnetworks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.

The book is written for graduate students, researchers, and practitioners. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques. The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition. Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.


"About this title" may belong to another edition of this title.

  • PublisherSpringer
  • Publication date2024
  • ISBN 10 3031296443
  • ISBN 13 9783031296444
  • BindingPaperback
  • LanguageEnglish
  • Edition number2
  • Number of pages553
  • Rating
    • 4.30 out of 5 stars
      46 ratings by Goodreads

Buy Used

Condition: Very Good
Zustand: Gut | Seiten: 553 | Sprache...
View this item

US$ 51.75 shipping from Germany to U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

9783031296413: Neural Networks and Deep Learning: A Textbook

Featured Edition

ISBN 10:  3031296419 ISBN 13:  9783031296413
Publisher: Springer, 2023
Hardcover

Search results for Neural Networks and Deep Learning: A Textbook

Stock Image

0
Published by Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Softcover

Seller: Basi6 International, Irving, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-379549

Contact seller

Buy New

US$ 57.73
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: 8 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Softcover

Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-283369

Contact seller

Buy New

US$ 57.73
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 26402088353

Contact seller

Buy New

US$ 57.74
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Softcover

Seller: Majestic Books, Hounslow, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 394321534

Contact seller

Buy New

US$ 56.12
Convert currency
Shipping: US$ 8.73
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Softcover

Seller: Biblios, Frankfurt am main, HESSE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 18402088363

Contact seller

Buy New

US$ 64.80
Convert currency
Shipping: US$ 11.44
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Aggarwal, Charu C.
Published by Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Used Softcover

Seller: Buchpark, Trebbin, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Gut. Zustand: Gut | Seiten: 553 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 42837354/3

Contact seller

Buy Used

US$ 33.46
Convert currency
Shipping: US$ 51.75
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Charu C. Aggarwal
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work When do they work better than off-the-shelf machine-learning models When is depth useful Why is training neural networks so hard What are the pitfalls The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems.Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:The basics of neural networks:The backpropagation algorithm is discussed in Chapter 2.Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 8, 9, and 10 discussrecurrent neural networks, convolutional neural networks, and graph neural networks.Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models. 556 pp. Englisch. Seller Inventory # 9783031296444

Contact seller

Buy New

US$ 63.35
Convert currency
Shipping: US$ 26.45
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Charu C. Aggarwal
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work When do they work better than off-the-shelf machine-learning models When is depth useful Why is training neural networks so hard What are the pitfalls The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems.Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:The basics of neural networks:The backpropagation algorithm is discussed in Chapter 2.Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 8, 9, and 10 discussrecurrent neural networks, convolutional neural networks, and graph neural networks.Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models. Seller Inventory # 9783031296444

Contact seller

Buy New

US$ 63.35
Convert currency
Shipping: US$ 38.12
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Aggarwal, Charu C
Published by Springer Verlag GmbH, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Seller Inventory # 1402956145

Contact seller

Buy New

US$ 55.95
Convert currency
Shipping: US$ 56.34
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Charu C. Aggarwal
ISBN 10: 3031296443 ISBN 13: 9783031296444
New Taschenbuch First Edition

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work When do they work better than off-the-shelf machine-learning models When is depth useful Why is training neural networks so hard What are the pitfalls The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2.Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neural networks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 556 pp. Englisch. Seller Inventory # 9783031296444

Contact seller

Buy New

US$ 63.35
Convert currency
Shipping: US$ 63.25
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket