The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r •. . . • rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . • [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n• say. B and C are j j j matrices of sizes n. x m and m x n . • respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
"synopsis" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 20183812-n
Quantity: 15 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783034874205
Quantity: 2 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r . . . rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r J J J J J where Aj is a square matrix of size nj x n say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity. A E r J J J J J where Aj is a square matrix of size nj x n say. B and C are j j j matrices of sizes n. J x J J and Aj = Aj - BjC have no eigenvalues on r . 1) the functions j j Wj are normalized to I at infinity. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783034874205
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 20183812
Quantity: 15 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783034874205_new
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 424. Seller Inventory # 2698182062
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r -. . . - rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . - [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r J J J J J where Aj is a square matrix of size nj x n- say. B and C are j j j matrices of sizes n. x m and m x n . - respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity. 424 pp. Englisch. Seller Inventory # 9783034874205
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 424 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Seller Inventory # 95263857
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 424. Seller Inventory # 1898182052
Quantity: 4 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r -. . . - rs whic. Seller Inventory # 4319110
Quantity: Over 20 available