The seminar Symplectic Geometry at the University of Berne in summer 1992 showed that the topic of this book is a very active field, where many different branches of mathematics come tog9ther: differential geometry, topology, partial differential equations, variational calculus, and complex analysis. As usual in such a situation, it may be tedious to collect all the necessary ingredients. The present book is intended to give the nonspecialist a solid introduction to the recent developments in symplectic and contact geometry. Chapter 1 gives a review of the symplectic group Sp(n,R), sympkctic manifolds, and Hamiltonian systems (last but not least to fix the notations). The 1\Iaslov index for closed curves as well as arcs in Sp(n, R) is discussed. This index will be used in chapters 5 and 8. Chapter 2 contains a more detailed account of symplectic manifolds start ing with a proof of the Darboux theorem saying that there are no local in variants in symplectic geometry. The most important examples of symplectic manifolds will be introduced: cotangent spaces and Kahler manifolds. Finally we discuss the theory of coadjoint orbits and the Kostant-Souriau theorem, which are concerned with the question of which homogeneous spaces carry a symplectic structure.
"synopsis" may belong to another edition of this title.
US$ 20.57 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783034875141
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783034875141_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The seminar Symplectic Geometry at the University of Berne in summer 1992 showed that the topic of this book is a very active field, where many different branches of mathematics come tog9ther: differential geometry, topology, partial differential equations, variational calculus, and complex analysis. As usual in such a situation, it may be tedious to collect all the necessary ingredients. The present book is intended to give the nonspecialist a solid introduction to the recent developments in symplectic and contact geometry. Chapter 1 gives a review of the symplectic group Sp(n,R), sympkctic manifolds, and Hamiltonian systems (last but not least to fix the notations). The 1Iaslov index for closed curves as well as arcs in Sp(n, R) is discussed. This index will be used in chapters 5 and 8. Chapter 2 contains a more detailed account of symplectic manifolds start ing with a proof of the Darboux theorem saying that there are no local in variants in symplectic geometry. The most important examples of symplectic manifolds will be introduced: cotangent spaces and Kahler manifolds. Finally we discuss the theory of coadjoint orbits and the Kostant-Souriau theorem, which are concerned with the question of which homogeneous spaces carry a symplectic structure. 244 pp. Englisch. Seller Inventory # 9783034875141
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The seminar Symplectic Geometry at the University of Berne in summer 1992 showed that the topic of this book is a very active field, where many different branches of mathematics come tog9ther: differential geometry, topology, partial differential equations, variational calculus, and complex analysis. As usual in such a situation, it may be tedious to collect all the necessary ingredients. The present book is intended to give the nonspecialist a solid introduction to the recent developments in symplectic and contact geometry. Chapter 1 gives a review of the symplectic group Sp(n,R), sympkctic manifolds, and Hamiltonian systems (last but not least to fix the notations). The 1Iaslov index for closed curves as well as arcs in Sp(n, R) is discussed. This index will be used in chapters 5 and 8. Chapter 2 contains a more detailed account of symplectic manifolds start ing with a proof of the Darboux theorem saying that there are no local in variants in symplectic geometry. The most important examples of symplectic manifolds will be introduced: cotangent spaces and Kahler manifolds. Finally we discuss the theory of coadjoint orbits and the Kostant-Souriau theorem, which are concerned with the question of which homogeneous spaces carry a symplectic structure. Seller Inventory # 9783034875141
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The seminar Symplectic Geometry at the University of Berne in summer 1992 showed that the topic of this book is a very active field, where many different branches of mathematics come tog9ther: differential geometry, topology, partial differential equations,. Seller Inventory # 4319136
Quantity: Over 20 available