Preface.- Introduction.- Part I Examples of Self-Similar Processes.- 1.Fractional Brownian Motion and Related Processes.- 2.Solutions to the Linear Stochastic Heat and Wave Equation.- 3.Non Gaussian Self-Similar Processes.- 4.Multiparameter Gaussian Processes.- Part II Variations of Self-Similar Process: Central and Non-Central Limit Theorems.- 5.First and Second Order Quadratic Variations. Wavelet-Type Variations.- 6.Hermite Variations for Self-Similar Processes.- Appendices: A.Self-Similar Processes with Stationary Increments: Basic Properties.- B.Kolmogorov Continuity Theorem.- C.Multiple Wiener Integrals and Malliavin Derivatives.- References.- Index.
"synopsis" may belong to another edition of this title.
Ciprian Tudor is Full Professor at the University of Lille 1, France. He graduated from the University of Bucharest, Romania in 1998 and he obtained his PH.D. degree on Probability Theory from Université de La Rochelle, France in 2002. After the doctorate he worked at the Université Pierre et Marie Curie Paris 6, France and at the Université de Panthéon-Sorbonne Paris 1 where he obtained the Habilitation in 2006. He has published intensively on stochastic processes, especially Malliavin calculus, self-similar processes and their applications. Up to 2012 he has over 80 scientific publications in various international recognized journals on probability theory and statistics.
“The author provides the general theory for different classes of self-similar processes with a complete treatment of limit theorems for their variations. ... The book is self-contained and suitable for both graduate students with a basic background in probability theory and stochastic processes and researchers whose aim is investigating this topic.” (Anthony Réveillac, Mathematical Reviews, February, 2015)
“This monograph is a profound survey of recent developments in the fields of ... self-similar processes and their calculus of variations. ... It may serve as an excellent basis for research seminars or special classes on Gaussian processes and Malliavin’s calculus and as a starting point for applied mathematicians with interest in self-similar processes.” (Michael Högele, zbMATH 1308.60004, 2015)
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want