The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener–Itô integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that enables us to combine the technique of random integrals and Fourier analysis. The most important results of this theory are presented together with some non-trivial limit theorems proved with their help.
This work is a new, revised version of a previous volume written with the goal of giving a better explanation of some of the details and the motivation behind the proofs. It does not contain essentially new results; it was written to give a better insight to the old ones. In particular, a more detailed explanation of generalized fields is included to show that what is at the first sight a rather formal object is actually a useful tool for carrying out heuristic arguments.
"synopsis" may belong to another edition of this title.
The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener–Itô integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that enables us to combine the technique of random integrals and Fourier analysis. The most important results of this theory are presented together with some non-trivial limit
theorems proved with their help.
This work is a new, revised version of a previous volume written with the goalof giving a better explanation of some of the details and the motivation behind the proofs. It does not contain essentially new results; it was written to give a better insight to the old ones. In particular, a more detailed explanation of generalized fields is included to show that what is at the first sight a rather formal object is actually a useful tool for carrying out heuristic arguments.
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 20406381-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020086287
Quantity: Over 20 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEOCT25-236943
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319026411
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 20406381
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of WienerIto integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that enables us to combine the technique of random integrals and Fourier analysis. The most important results of this theory are presented together with some non-trivial limit theorems proved with their help.This work is a new, revised version of a previous volume written with the goal of giving a better explanation of some of the details and the motivation behind the proofs. It does not contain essentially new results; it was written to give a better insight to the old ones. In particular, a more detailed explanation of generalized fields is included to show that what is at the first sight a rather formal object is actually a useful tool for carrying out heuristic arguments. The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783319026411
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 144. Seller Inventory # 2698177019
Quantity: 4 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783319026411
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319026411_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 20406381-n
Quantity: Over 20 available