Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.
This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
"synopsis" may belong to another edition of this title.
From the book reviews:
“This book is a comprehensive collection of data preprocessing techniques used in data mining. Any readers who practice data mining will find it beneficial ... . This book is an excellent guideline in the topic of data preprocessing for data mining. It is suitable for both practitioners and researchers who would like to use datasets in their data mining projects.” (Xiannong Meng, Computing Reviews, December, 2014)"About this title" may belong to another edition of this title.
Shipping:
US$ 4.25
Within U.S.A.
Seller: Grumpys Fine Books, Tijeras, NM, U.S.A.
Hardcover. Condition: very good. little wear and tear. Seller Inventory # Grumpy331910246X
Quantity: 1 available
Seller: M.S. Books, Salisbury, MD, U.S.A.
Hardcover. Condition: Fine. 1st Edition. A detailed discussion of data mining with particular focus on the relationship between data acquisition from the source and the data mining process. 320 pages. No sign of previous use. Seller Inventory # 015047
Quantity: 1 available
Seller: Grumpys Fine Books, Tijeras, NM, U.S.A.
Hardcover. Condition: new. Prompt service guaranteed. Seller Inventory # Clean331910246X
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020088276
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA773331910246X6
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319102467
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers the set of techniques under the umbrella of data preprocessing in data mining and machine learningA comprehensive book devoted completely to preprocessing in data miningWritten by experts in the fieldData Preprocessing . Seller Inventory # 4498703
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering. 336 pp. Englisch. Seller Inventory # 9783319102467
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering. Seller Inventory # 9783319102467
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2015 edition. 336 pages. 9.25x6.25x0.75 inches. In Stock. Seller Inventory # x-331910246X
Quantity: 2 available