G proteins are the key regulators for a wide range of cellular processes in animals and plants. In comparison to animals and yeast, plants have a single Rho-GTPase subfamily called Rho-like GTPases (ROPs). The ROP family of monomeric GTPases has emerged as a versatile and key regulator in plant signal transduction processes. During the past few years’ studies on plant RHO-type (ROP) GTPase have generated new insights into their role in diverse processes ranging from cytoskeletal organization, polar growth, development to stress and hormonal responses. Studies have shown that plants have evolved specific regulators and effector molecules. ROP GTPases possess the ability to interact with these multiple regulator and effector molecules that ultimately determines their signaling specificity. Recently, genome wide studies in plants have shown that the Arabidopsis genome encodes 93, and rice has nearly 85 small GTPase homologs. And we have been able to identify four new homologs in the rice genome. Here, we focus on the complete phylogenetic, domain, structural and expression analysis during stress and various developmental processes of small GTPases in plants. The comparison of gene expression patterns of the individual members of the GTPase family may help to reveal potential plant specific signaling mechanisms and their relevance. Also, we are summarizing the role of currently known ROP GTPases and their interacting proteins with brief description, simultaneously, comparing their expression pattern based on microarray data. Overall, we will be discussing the functional genomic perspective of plant Rho like GTPases and their role in regulating several physiological processes such as stress, hormonal, pollen tube, root hair-growth and other developmental responses.
"synopsis" may belong to another edition of this title.
Girdhar K. Pandey
Department of Plant Molecular Biology
Delhi University South Campus
Dhaula Kuan, New Delhi
India
Manisha Sharma
Department of Plant Molecular Biology
Delhi University South Campus
Dhaula Kuan, New Delhi
India
Amita Pandey
Department of Plant Molecular Biology
Delhi University South Campus
Dhaula Kuan, New Delhi
India
Thiruvekadam Shanmugam
Division of Biosciences and Bioinformatics
Myongji University
Kyunggi-do
Republic of South Korea
Genome wide studies in plants have shown that the Arabidopsis genome encodes 93, and rice has nearly 85 small GTPase homologs. This text focuses on the complete phylogenetic, domain, structural and expression analysis during stress and various developmental processes of small GTPases in plants. The comparison of gene expression patterns of the individual members of the GTPase family may help to reveal potential plant specific signaling mechanisms and their relevance. This book also summarizes the role of currently known ROP GTPases and their interacting proteins with brief description, simultaneously, comparing their expression pattern based on microarray data.
"GTPases: Versatile Regulators of Signal Transduction in Plants "will prove beneficial to both students and researchers in this field and will enable them to understand the mechanisms and importance of these versatile signaling molecules in plants.
"
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 21871798-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020088639
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. G proteins are the key regulators for a wide range of cellular processes in animals and plants. In comparison to animals and yeast, plants have a single Rho-GTPase subfamily called Rho-like GTPases (ROPs). The ROP family of monomeric GTPases has emerged as a versatile and key regulator in plant signal transduction processes. During the past few years studies on plant RHO-type (ROP) GTPase have generated new insights into their role in diverse processes ranging from cytoskeletal organization, polar growth, development to stress and hormonal responses. Studies have shown that plants have evolved specific regulators and effector molecules. ROP GTPases possess the ability to interact with these multiple regulator and effector molecules that ultimately determines their signaling specificity. Recently, genome wide studies in plants have shown that the Arabidopsis genome encodes 93, and rice has nearly 85 small GTPase homologs. And we have been able to identify four new homologs in the rice genome. Here, we focus on the complete phylogenetic, domain, structural and expression analysis during stress and various developmental processes of small GTPases in plants. The comparison of gene expression patterns of the individual members of the GTPase family may help to reveal potential plant specific signaling mechanisms and their relevance. Also, we are summarizing the role of currently known ROP GTPases and their interacting proteins with brief description, simultaneously, comparing their expression pattern based on microarray data. Overall, we will be discussing the functional genomic perspective of plant Rho like GTPases and their role in regulating several physiological processes such as stress, hormonal, pollen tube, root hair-growth and other developmental responses. G proteins are the key regulators for a wide range of cellular processes in animals and plants. During the past few years studies on plant RHO-type (ROP) GTPase have generated new insights into their role in diverse processes ranging from cytoskeletal organization, polar growth, development to stress and hormonal responses. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783319116105
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 21871798
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319116105
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319116105_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 21871798-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -G proteins are the key regulators for a wide range of cellular processes in animals and plants. In comparison to animals and yeast, plants have a single Rho-GTPase subfamily called Rho-like GTPases (ROPs). The ROP family of monomeric GTPases has emerged as a versatile and key regulator in plant signal transduction processes. During the past few years' studies on plant RHO-type (ROP) GTPase have generated new insights into their role in diverse processes ranging from cytoskeletal organization, polar growth, development to stress and hormonal responses. Studies have shown that plants have evolved specific regulators and effector molecules. ROP GTPases possess the ability to interact with these multiple regulator and effector molecules that ultimately determines their signaling specificity. Recently, genome wide studies in plants have shown that the Arabidopsis genome encodes 93, and rice has nearly 85 small GTPase homologs. And we have been able to identify four new homologs in the rice genome. Here, we focus on the complete phylogenetic, domain, structural and expression analysis during stress and various developmental processes of small GTPases in plants. The comparison of gene expression patterns of the individual members of the GTPase family may help to reveal potential plant specific signaling mechanisms and their relevance. Also, we are summarizing the role of currently known ROP GTPases and their interacting proteins with brief description, simultaneously, comparing their expression pattern based on microarray data. Overall, we will be discussing the functional genomic perspective of plant Rho like GTPases and their role in regulating several physiological processes such as stress, hormonal, pollen tube, root hair-growth and other developmental responses. 96 pp. Englisch. Seller Inventory # 9783319116105
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 21871798
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 2015 edition. 81 pages. 8.75x6.00x0.25 inches. In Stock. Seller Inventory # x-331911610X
Quantity: 2 available