This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.
The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.
They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.
The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
"synopsis" may belong to another edition of this title.
Dr. Verónica Bolón-Canedo received her PhD in Computer Science from the University of A Coruña, where she is currently a postdoctoral researcher. Her research interests include data mining, feature selection and machine learning.
Dr. Noelia Sánchez-Maroño received her PhD in 2005 from the University of A Coruña, where she is currently a lecturer. Her research interests include agent-based modeling, machine learning and feature selection.
Prof. Amparo Alonso-Betanzos received her PhD in 1988 from the University of Santiago de Compostela, she is a Chair Professor in the Dept. of Computer Science at the University of A Coruña (Spain) and coordinator of the Laboratory for Research and Development in Artificial Intelligence. Her areas of expertise are machine learning, feature selection, knowledge-based systems, and their applications to fields such as predictive maintenance in engineering or predicting gene expression in bioinformatics.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.
The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.
They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data,
intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.
The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 24008225-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020091041
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 24008225
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Hardback. Condition: New. 1st ed. 2015. This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining. Seller Inventory # LU-9783319218571
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319218571_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 24008225-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining. 164 pp. Englisch. Seller Inventory # 9783319218571
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 24008225
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 148 pages. 9.25x6.25x0.50 inches. In Stock. Seller Inventory # x-3319218573
Quantity: 2 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Explains how to choose an optimal subset of features according to a certain criterionCoherent, comprehensive approach to feature subset selection in the scope of classification problemsAuthors explain the Big Dimensionality problemDr. Seller Inventory # 35207642
Quantity: Over 20 available