This book is an extension of the author’s first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.
The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes’ theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem―as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes.It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants.
"synopsis" may belong to another edition of this title.
Jeff Grover, Doctor of Business Administration (DBA) (Finance), is Founder and Chief Research Scientist at Grover Group, Inc., where he specializes in Bayes’ Theorem and its application to strategic economic decision making through Bayesian Belief Networks (BBN). He specializes in blending economic theory and BBN to maximize stakeholder wealth. He is a winner of the Kentucky Innovation Award (2015) for the application of his proprietary BBN big data algorithm. He has operationalized BBN in the healthcare industry, evaluating the Medicare “Hospital Compare” data; in the Department of Defense, conducting research with U.S. Army Recruiting Command to determine optimal levels of required recruiters for recruiting niche market medical professionals; and in the agriculture industry in optimal soybean selection. In the area of economics, he was recently contracted by the Department of Energy, The Alliance for Sustainable Energy, LLC Management and Operating Contractor for the National Renewable Energy Laboratory, to conduct a 3rd party evaluation of the Hydrogen Financial Analysis Scenario (H2FAST) Tool.
This book is an extension of the author’s first book and serves as a guide and manual on how to specify and compute 2-, 3-, & 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for naïve learners and professionals, with a proof-based academic rigor.
The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem - as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes. It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-,3-, and 4-event BBN of numerous variants.
Jeff Grover, PhD, is Founder and Chief Research Scientist at Grover Group, Inc., where he specializes in Bayes’ Theorem and its application to strategic economic decision making through Bayesian belief networks (BBNs). He specializes in blending economic theory and BBN to maximize stakeholder wealth. He is a winner of the Kentucky Innovation Award (2015) for the application of his proprietary BBN big data algorithm. He has operationalized BBN in the healthcare industry, evaluating the Medicare “Hospital Compare” data; in the Department of Defense, conducting research with U.S. Army Recruiting Command to determine optimal levels of required recruiters for recruiting niche market medical professionals; and in the agriculture industry in optimal soybean selection. In the area of economics, he was recently contracted by the Department of Energy, The Alliance for Sustainable Energy, LLC Management and Operating Contractor for the National Renewable Energy Laboratory, to conduct a 3rd party evaluation of the Hydrogen Financial Analysis Scenario (H2FAST) Tool.
"About this title" may belong to another edition of this title.
US$ 35.21 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germany
XXVIII, 260 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Seller Inventory # 848MB
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 27876748-n
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783319484136
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020098659
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 27876748
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319484136_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 27876748-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an extension of the author's first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes' theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem-as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in theirdecision-making processes. It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants. 288 pp. Englisch. Seller Inventory # 9783319484136
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 27876748
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 130396571
Quantity: Over 20 available