Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology - Softcover

Bhushan, Bharat

 
9783319716770: Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

This specific ISBN edition is currently not available.

Synopsis

Chapter 1.  Introduction (Revised)

1.1. Introduction

1.2. Biodiversity

1.3. Lessons from Nature

1.4. Golden Ratio and Fibonacci Numbers

1.5. Biomimetics in Art and Architecture - Bioarchitecture

1.6. Industrial Significance

1.7. Research Objective and Approach

1.8. Organization of the Book

Chapter 2.  Roughness-Induced Superliquiphilic/phobic Surfaces:  Lessons from Nature (Revised)

2.1. Introduction

2.2. Wetting States

2.3. Applications

2.4. Natural Superhydrophobic, Self-Cleaning, Low Adhesion/Drag Reduction Surfaces with Antifouling

2.5. Natural Superhydrophobic and High Adhesion Surfaces

2.6. Natural Superoleophobic Self-Cleaning and Low Drag Surfaces with Antifouling

2.7. Closure

Chapter 3.  Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes (Revised)

3.1. Introduction

3.2. Contact Angle Definition

3.3. Homogenous and Heterogeneous Interfaces and the Wenzel, Cassie-Baxter and Cassie Equations

3.3.1. Limitations of the Wenzel and Cassie-Baxter Equations

3.3.2. Range of Applicability of the Wenzel and Cassie-Baxter Equations

3.4. Contact Angle Hysteresis

3.5. Stability of a Composite Interface and Role of Hierarchical Structure with Convex Surfaces

3.6. The Cassie-Baxter and Wenzel Wetting Regime Transition

3.7. Closure

Chapter 4.  Lotus Effect Surfaces in Nature (Revised)

4.1. Introduction

4.2. Plant Leaves

4.3. Characterization of Superhydrophobic and Hydrophilic Leaf Surfaces

4.3.1. Experimental Techniques

4.32. SEM Micrographs

4.3.3. Contact Angle Measurements

4.3.4. Surface Characterization Using an Optical Profiler

4.3.5. Surface Characterization, Adhesion, and Friction Using an AFM

4.3.6. Role of the Hierarchical Roughness

4.3.7. Summary 

4.4. Various Self-cleaning Approaches

4.4.1. Comparison between Superhydrophobic and Superhydrophilic Surface Approaches for Self-cleaning

4.4.2. Summary

4.5. Closure

Chapter 5.  Fabrication Techniques used for Superliquiphilic/phobic Structures (Revised)

5.1. Introduction

5.2. Roughening to Create One-Level Structure

5.3. Coatings to Create One-Level Structures

5.4. Methods to Create Two-Level (Hierarchical) Structures

5.5. Etching Techniques for Attachment of Coatings

5.6. Closure

Chapter 6.  Strategies of Micro-, Nano- and Hierarchically Structured Lotus-like Surfaces (Revised)

6.1. Introduction

6.2. Experimental Techniques

6.2.1. Contact Angle, Surface Roughness, and Adhesion

6.2.2. Droplet Evaporation Studies

6.2.3. Bouncing Droplet Studies

6.2.4. Vibrating Droplet Studies

6.2.5. Microdroplet Condensation and Evaporation Studies using ESEM

6.2.6. Generation of Submicron Droplets

6.3. Micro- and Nanopatterned Polymers

6.3.1. Contact Angle

6.3.2. Effect of Submicron Droplet on Contact Angle

6.3.3. Adhesive Force

6.3.4. Summary

6.4. Micropatterned Si Surfaces

6.4.1. Cassie-Baxter and Wenzel Transition Criteria

6.4.2. Effect

"synopsis" may belong to another edition of this title.

Other Popular Editions of the Same Title