A charge transfer across the interface between two immiscible liquid media has an important role both in nature and in man-designed applications. Ion transfer across the biological membranes, behavior of ion-selective electrodes with liquid membranes and similar sensors, extraction processes, phase transfer catalysis and applications in electroanalytical chemistry can serve as examples. Present interest in the interface between two immiscible electrolytes (liquid liquid or L/L interface) was originated by Koryta's idea (Koryta, Vanysek and Brezina 1976) that the interface between immiscible liquids could serve as a simple model for one half of a biological membrane in the contact with the surrounding electrolyte. It was also Koryta who started using the acronym ITIES (Interface between Two Immiscible Electrolyte Solutions) which generally encompasses all the phenomena discussed in this book. Physiological and electrochemical investigations have certainly well established tradition. In his classic experiments with frog thighs Luigi Galvani discovered in 1791 relationship between electricity and nerves and muscles. As outlined by Koryta and Stullk (1983) in the introduction to their book, the study of electrophysiological phenomena did not progress much for several decades and only a few experiments were performed. For instance M. Faraday (Williams, 1965) studied the electricity produced by an electric fish and Du Bois-Reymond (1848) suggested that the surface of biological formations have properties similar to the electrode of a galvanic cell. However, the properties of biological membrane could not be explained before the first concept of electrochemistry was postulated.
"synopsis" may belong to another edition of this title.
Shipping:
US$ 4.50
Within U.S.A.
Seller: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condition: Good. *Price HAS BEEN REDUCED by 10% until Monday, April 21 (weekend SALE ITEM)* 106 pp., paperback, ex library else text clean and binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Seller Inventory # ZB1315818
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783540156772
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540156772_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A charge transfer across the interface between two immiscible liquid media has an important role both in nature and in man-designed applications. Ion transfer across the biological membranes, behavior of ion-selective electrodes with liquid membranes and similar sensors, extraction processes, phase transfer catalysis and applications in electroanalytical chemistry can serve as examples. Present interest in the interface between two immiscible electrolytes (liquid liquid or L/L interface) was originated by Koryta's idea (Koryta, Vanysek and Brezina 1976) that the interface between immiscible liquids could serve as a simple model for one half of a biological membrane in the contact with the surrounding electrolyte. It was also Koryta who started using the acronym ITIES (Interface between Two Immiscible Electrolyte Solutions) which generally encompasses all the phenomena discussed in this book. Physiological and electrochemical investigations have certainly well established tradition. In his classic experiments with frog thighs Luigi Galvani discovered in 1791 relationship between electricity and nerves and muscles. As outlined by Koryta and Stullk (1983) in the introduction to their book, the study of electrophysiological phenomena did not progress much for several decades and only a few experiments were performed. For instance M. Faraday (Williams, 1965) studied the electricity produced by an electric fish and Du Bois-Reymond (1848) suggested that the surface of biological formations have properties similar to the electrode of a galvanic cell. However, the properties of biological membrane could not be explained before the first concept of electrochemistry was postulated. 112 pp. Englisch. Seller Inventory # 9783540156772
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - A charge transfer across the interface between two immiscible liquid media has an important role both in nature and in man-designed applications. Ion transfer across the biological membranes, behavior of ion-selective electrodes with liquid membranes and similar sensors, extraction processes, phase transfer catalysis and applications in electroanalytical chemistry can serve as examples. Present interest in the interface between two immiscible electrolytes (liquid liquid or L/L interface) was originated by Koryta's idea (Koryta, Vanysek and Brezina 1976) that the interface between immiscible liquids could serve as a simple model for one half of a biological membrane in the contact with the surrounding electrolyte. It was also Koryta who started using the acronym ITIES (Interface between Two Immiscible Electrolyte Solutions) which generally encompasses all the phenomena discussed in this book. Physiological and electrochemical investigations have certainly well established tradition. In his classic experiments with frog thighs Luigi Galvani discovered in 1791 relationship between electricity and nerves and muscles. As outlined by Koryta and Stullk (1983) in the introduction to their book, the study of electrophysiological phenomena did not progress much for several decades and only a few experiments were performed. For instance M. Faraday (Williams, 1965) studied the electricity produced by an electric fish and Du Bois-Reymond (1848) suggested that the surface of biological formations have properties similar to the electrode of a galvanic cell. However, the properties of biological membrane could not be explained before the first concept of electrochemistry was postulated. Seller Inventory # 9783540156772
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A charge transfer across the interface between two immiscible liquid media has an important role both in nature and in man-designed applications. Ion transfer across the biological membranes, behavior of ion-selective electrodes with liquid membranes and si. Seller Inventory # 4882717
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 112 pages. 9.61x6.69x0.26 inches. In Stock. Seller Inventory # x-3540156771
Quantity: 2 available
Seller: dsmbooks, Liverpool, United Kingdom
Paperback. Very Good Dust Jacket may be missing.CDs may be missing. book. Seller Inventory # D8F0-0-M-3540156771-6
Quantity: 1 available