hereafter calledvolume the of In a volume study previous (H6non 1997, I), the restricted initiated. families in problem (We generating three body was recallthat families defined asthe limits offamilies of are periodic generating determinationof orbitsfor Themain wasfoundto lieinthe 4 problem p 0.) bifurcation wheretwo the betweenthebranches ata ormore orbit, junctions A solutionto this was familiesof orbits intersect. partial problem generating and sidesof theuseofinvariants: Manysimple symmetries passage. givenby In the evolution of the bifurcations can be solved in this way. particular, orbits be described almost nine natural families of can completely. periodic become i.e.when thenumber of asthe bifurcations morecomplex, However, fails. the bifurcation orbit themethod families increases, passingthrough of This volume describes another to the a approach problem, consisting in of bifurcation ofthe families the a analysis vicinity detailed, quantitative used in Vol. I. orbit. This moreworkthan the requires qualitativeapproach in at to deter it has the of least, However, advantage allowing us, principle branches Infact it morethanthat: minein allcaseshowthe are joined. gives almost all the first order we will see in asymptotic approxima that, cases, the families in the ofthe bifurcation can be derived. tion of neighbourhood found in with This a comparison numerically allows, particular, quantitative families. and The 11 dealswiththerelevant definitions Chapter generalequations. of describedin 12 16.The ofbifurcations 1 is Chaps. study type quantitative it is described in 17 23. 3 of 2 ismore Chaps. Type analysis type involved; its hadnot been at thetime of isevenmore completed complex; analysis yet writing.
"synopsis" may belong to another edition of this title.
The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems.
From the reviews
"The book is an excellent overview of the state-of-the-art of the restricted three-body problem."
Zentralblatt für Mathematik, 1998
"About this title" may belong to another edition of this title.
Shipping:
US$ 22.60
From Germany to U.S.A.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 320. Seller Inventory # 2658591530
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 320 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Seller Inventory # 50968309
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 320. Seller Inventory # 1858591520
Quantity: 1 available
Seller: CSG Onlinebuch GMBH, Darmstadt, Germany
Gebunden. Condition: Gut. Gebraucht - Gut Zustand: Gut, II. Quantitative Study of Bifurcations XII, 301 pp. About this book: The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems. Written for Graduate students and researchers. Seller Inventory # 16018
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020166737
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems. 320 pp. Englisch. Seller Inventory # 9783540417330
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems. Seller Inventory # 9783540417330
Quantity: 1 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is an in-depth study of an important model of a non-integrable Hamiltonian dynamical systemIt will certainly trigger a host of interesting future researchDefinitions and General Equations.- Quantitative Study of Type 1.- Partial Bifurcation of . Seller Inventory # 4889410
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2001 edition. 320 pages. 9.25x6.25x1.00 inches. In Stock. Seller Inventory # x-3540417338
Quantity: 2 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540417330_new
Quantity: Over 20 available