A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
"synopsis" may belong to another edition of this title.
Shipping:
US$ 33.97
From Germany to U.S.A.
Seller: Antiquariat Dorner, Reinheim, Germany
Lecture Notes in Mathematics 1670. Berlin, Springer 1997. VIII, 149 S., OKart. Neuwertig. Seller Inventory # 118785
Quantity: 1 available
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Außen: Knick. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 164 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 626474/202
Quantity: 2 available