Restricted-orientation convexity is the study of geometric objects whose intersections with lines from some fixed set are connected. This notion generalizes standard convexity and several types of nontraditional convexity. The authors explore the properties of this generalized convexity in multidimensional Euclidean space, and describ restricted-orientation analogs of lines, hyperplanes, flats, halfspaces, and identify major properties of standard convex sets that also hold for restricted-orientation convexity. They then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to that of standard convexity.
"synopsis" may belong to another edition of this title.
Eugene Fink received his B.S. degree from Mount Allison University (Canada) in 1991, M.S. from the University of Waterloo (Canada) in 1992, and Ph.D. from Carnegie Mellon University (USA) in 1999. He has been an assistant professor in the Computer Science and Engineering Department at the University of South Florida (USA) since 1999. His research interests include computational geometry, artificial intelligence, machine learning, and e-commerce.
Derick Wood received his B.Sc. (1963) and Ph.D. (1968) from the University of Leeds (UK). He was a Postdoctoral Fellow at the Courant Institute, New York University (USA), from 1968 to 1970, and then joined McMaster University (Canada) in 1970. He was a professor at the University of Waterloo (Canada) from 1982 to 1992, at the University of Western Ontario (Canada) from 1992 to 1995, and at the Hong Kong University of Science and Technology since 1995. He has published widely in a number of research areas and written two textbooks, "Theory of Computation" (John Wiley, 1987) and "Data Structures, Algorithms, and Performance" (Addison-Wesley, 1993).
From the reviews:
"The well-organized, readable, interesting volume considers two generalizations of the concept of convexity in Rn, and their usual related concepts (hull, visibility, kernel, etc.). ... The volume would be very good for a seminar studying the many results from the last two decades on these forms of generalized convexity. The book closes with suggestions and conjectures for the direction of future research." (John R. Reay, Mathematical Reviews, Issue 2007 j)
"About this title" may belong to another edition of this title.
Shipping:
US$ 32.71
From United Kingdom to U.S.A.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020231249
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642623233_new
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 116. Seller Inventory # 26128019681
Quantity: 4 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783642623233
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Restricted-orientation convexity is the study of geometric objects whose intersections with lines from some fixed set are connected. This notion generalizes standard convexity and several types of nontraditional convexity. The authors explore the properties of this generalized convexity in multidimensional Euclidean space, and describ restricted-orientation analogs of lines, hyperplanes, flats, halfspaces, and identify major properties of standard convex sets that also hold for restricted-orientation convexity. They then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to that of standard convexity. 116 pp. Englisch. Seller Inventory # 9783642623233
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 116 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 131519294
Quantity: 4 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Restricted-orientation convexity is the study of geometric objects whose intersections with lines from some fixed set are connected. This notion generalizes standard convexity and several types of nontraditional convexity. We explore the properties of this generalized convexity in multidimensional Euclidean space, describes restricted-orientation analogs of lines, hyperplanes, flats, and halfspaces, and identify major properties of standard convex sets that also hold for restricted-orientation convexity. We then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to those of standard convexity. Seller Inventory # 9783642623233
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 116 pages. 9.25x6.10x0.30 inches. In Stock. Seller Inventory # x-3642623239
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 116. Seller Inventory # 18128019691
Quantity: 4 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book on the topicEugene Fink received his B.S. degree from Mount Allison University (Canada) in 1991, M.S. from the University of Waterloo (Canada) in 1992, and Ph.D. from Carnegie Mellon University (USA) in 1999. He has been an assistan. Seller Inventory # 5064717
Quantity: Over 20 available