In this book, the author compares the meaning of stability in different subfields of numerical mathematics.
Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations.
In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.
"synopsis" may belong to another edition of this title.
The author is a very well-known author of Springer, working in the field of numerical mathematics for partial differential equations and integral equations. He has published numerous books in the SSCM series, e.g., about the multi-grid method, about the numerical analysis of elliptic pdes, about iterative solution of large systems of equation, and a book in German about the technique of hierarchical matrices. Hackbusch is also in the editorial board of Springer's book series "Advances in Numerical Mathematics" and "The International Cryogenics Monograph Series".
In this book, the author compares the meaning of stability in different subfields of numerical mathematics.
Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations.
In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020316103
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783662513712
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783662513712_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783662513712
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book, the author compares the meaning of stability in different subfields of numerical mathematics.Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations.In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability. 204 pp. Englisch. Seller Inventory # 9783662513712
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a self-contained presentation of aspects of stability in numerical mathematicsCompares and characterizes stability in different subfields of numerical mathematicsCovers numerical treatment of ordinary differential equations, discretisation. Seller Inventory # 385771807
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 204 pages. 9.25x6.10x0.46 inches. In Stock. Seller Inventory # x-3662513714
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 203. Seller Inventory # 26378361591
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -In this book, the author compares the meaning of stability in different subfields of numerical mathematics.Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations.In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 204 pp. Englisch. Seller Inventory # 9783662513712
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book, the author compares the meaning of stability in different subfields of numerical mathematics.Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations.In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability. Seller Inventory # 9783662513712