Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators havebeen useful in severalcontexts of Banachspacetheory that haveno apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pe lczynski [49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summabilityproblemsoftauberiantype[63,115], intheproblemoftheequivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James characterization of re?exive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local re?exivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operatorsappear scattered throughout the literature, in this book wegive a uni?ed presentationof their propertiesand their main applications in functional analysis. We also describe some questions about tauberian operators that remain open. This book has six chapters and an appendix. In Chapter 1 we show how the concept of tauberian operator was introduced in the study of a classical problem in summability theory the characterization of conservative matrices that sum no bounded divergent sequences by means of functional analysis techniques. One of thosesolutionsisdue toCrawford[45], whoconsideredthe secondconjugateofthe operatorassociatedwithoneofthosematrices."
"synopsis" may belong to another edition of this title.
From the reviews:
“Tauberian operators were introduced by Kalton and Wilanski in 1976 as an abstract counterpart of some operators associated to conservative summability matrices. ... The book present in a clear and unified way the basic properties of tauberian operators and their applications in functional analysis scattered throughout the literature. ... is addressed to graduate students and researchers in functional analysis and operator theory, but it can be used also as a basic text for advanced graduate courses.” (V. Anisiu, Studia Universitatis Babes-Bolyai, Mathematica, Vol. LV (4), December, 2010)
“The monograph under review contains the first comprehensive exposition of properties and applications of Tauberian and co-Tauberian operators, as well as of those of operators belonging to various related classes. ... This monograph provides a careful unified account of ongoing research, and it is a welcome addition to the research literature on the qualitative theory of operators on Banach spaces. It is aimed at graduate students and researchers in operator theory and Banach spaces.” (Hans-Olav Tylli, Mathematical Reviews, Issue 2011 e)
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110059373
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783764389970_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators have been useful in several contexts of Banach space theory that have no apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pelczynski [49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summability problems of tauberian type [63, 115], in the problem of the equivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James characterization of reflexive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local reflexivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operators appear scattered throughout the literature, in this book we give a unified presentation of their properties and their main applications in functional analysis. We also describe some questions about tauberian operators that remain open.This book has six chapters and an appendix. In Chapter 1 we show how the concept of tauberian operator was introduced in the study of a classical problem in summability theory the characterization of conservative matrices that sum no bounded divergent sequences by means of functional analysis techniques. One of those solutions is due to Crawford [45], who considered the second conjugate of the operator associated with one of those matrices. 264 pp. Englisch. Seller Inventory # 9783764389970
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 260 1st Edition. Seller Inventory # 26581738
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First unified exposition of the theory of tauberian operators Describes a wide range of applications of the topic Self-contained and accessible for both graduate students and researchersThe origins of tauberian operators.- Tauberian. Seller Inventory # 5280018
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 260. Seller Inventory # 8347573
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 260. Seller Inventory # 18581728
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators have been useful in several contexts of Banach space theory that have no apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pelczynski[49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summability problems of tauberian type [63, 115], in the problem of the equivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James' characterization of reflexive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local reflexivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operators appear scattered throughout the literature, in this book we give a unified presentation of their properties and their main applications in functional analysis. We also describe some questions about tauberian operators that remain open.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 264 pp. Englisch. Seller Inventory # 9783764389970
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Seller Inventory # ERICA78737643899746
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Tauberian operators were introduced to investigate a problem in summability theory from an abstract point of view. Since that introduction, they have made a deep impact on the isomorphic theory of Banach spaces. In fact, these operators have been useful in several contexts of Banach space theory that have no apparent or obvious connections. For instance, they appear in the famous factorization of Davis, Figiel, Johnson and Pelczynski [49] (henceforth the DFJP factorization), in the study of exact sequences of Banach spaces [174], in the solution of certain summability problems of tauberian type [63, 115], in the problem of the equivalence between the Krein-Milman property and the Radon-Nikodym property [151], in certain sequels of James characterization of reflexive Banach spaces [135], in the construction of hereditarily indecomposable Banach spaces [13], in the extension of the principle of local reflexivity to operators [27], in the study of certain Calkin algebras associated with the weakly compact operators [16], etc. Since the results concerning tauberian operators appear scattered throughout the literature, in this book we give a unified presentation of their properties and their main applications in functional analysis. We also describe some questions about tauberian operators that remain open.This book has six chapters and an appendix. In Chapter 1 we show how the concept of tauberian operator was introduced in the study of a classical problem in summability theory the characterization of conservative matrices that sum no bounded divergent sequences by means of functional analysis techniques. One of those solutions is due to Crawford [45], who considered the second conjugate of the operator associated with one of those matrices. Seller Inventory # 9783764389970