Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the ?rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules.
"synopsis" may belong to another edition of this title.
From the reviews:
“This book is dedicated to generalizations of regularity for an Abelian group ... . contains an excellent and detailed exposition of results on all types of regularity in Hom with consequences for modules and rings. It is accessible, with all necessary definitions and proofs, contains also a series of instructive examples. ... interest both for students and specialists.” (A. I. Kashu, Zentralblatt MATH, Vol. 1169, 2009)"About this title" may belong to another edition of this title.
Seller: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condition: Fine. *Price HAS BEEN REDUCED by 10% until Monday, Jan. 26 (weekend SALE item)* 179 pp., Paperback, fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Seller Inventory # ZB1281036
Seller: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germany
XV, 164 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Stamped. Frontiers in Mathematics Sprache: Englisch. Seller Inventory # 6126DB
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 5991943
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 5991943-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110059390
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783764399894_new
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the ?rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules. Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783764399894
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 5991943-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de ned regularity in modules and studied the structure of regular modules. Nicholson ([26]) generalized the notion and theory of regular modules. In this purely algebraic monograph we study a generalization of regularity to the homomorphism group of two modules which was introduced by the rst author ([19]). Little background is needed and the text is accessible to students with an exposure to standard modern algebra. In the following, Risaringwith1,and A, M are right unital R-modules. 184 pp. Englisch. Seller Inventory # 9783764399894
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 5991943
Quantity: Over 20 available