In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.
The authors explore foam-like carbon structures, which relate to ‘schwarzites’, and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices.
The text also provides literature and data on the field of nanostructure periodicity and the authors’ own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed.
This book is aimed at scientists working in the field ofnanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future.
"synopsis" may belong to another edition of this title.
In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.
The authors explore foam-like carbon structures, which relate to ‘schwarzites’, and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices.
The text also provides literature and data on the field of nanostructure periodicity and the authors’ own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed.
This book is aimed at scientistsworking in the field of nanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110338667
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -These tiny structures could offer architectural designs for the cities of the future. The authors explore the foam-like carbon structures, which relate to 'schwarzites' and which are infinite periodic minimal surfaces of negative curvature. They show that the periodicity of close repeat units of such structures is evident not only in these formations but also in all of the carbon allotropes. The text provides literature and data on the field of nanostructure periodicity and the authors' own results on nanostructure building and energy calculations. 224 pp. Englisch. Seller Inventory # 9789048175062
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 224 1st Edition. Seller Inventory # 2614419107
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An atlas of fascinating nano-structures, which could also be used for illustrating a fiction bookThe solid theoretical background will ensure a good reliability of the included informationThese tiny structures could offer architectural . Seller Inventory # 5821346
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789048175062_new
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 224. Seller Inventory # 11254652
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 209 pages. 9.00x6.00x0.53 inches. In Stock. Seller Inventory # x-9048175062
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 224. Seller Inventory # 1814419113
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.The authors explore foam-like carbon structures, which relate to ¿schwarzites¿, and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices.The text also provides literature and data on the field of nanostructure periodicity and the authors¿ own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed.This book is aimed at scientists working in the field ofnanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch. Seller Inventory # 9789048175062
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.The authors explore foam-like carbon structures, which relate to 'schwarzites', and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices.The text also provides literature and data on the field of nanostructure periodicity and the authors' own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed.This book is aimed at scientists working in the field ofnanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future. Seller Inventory # 9789048175062