Biosensors are analytical devices in which speci?c recognition of the chemical substances is performed by biological material. The biological material that serves as recognition element is used in combination with a transducer. The transducer transforms concentration of substrate or product to electrical signal that is amp- ?ed and further processed. The biosensors may utilize enzymes, antibodies, nucleic acids, organelles, plant and animal tissue, whole organism or organs. Biosensors containing biological catalysts (enzymes) are called catalytical biosensors. These type of biosensors are the most abundant, and they found the largest application in medicine, ecology, and environmental monitoring. The action of catalytical biosensors is associated with substrate diffusion into biocatalytical membrane and it conversion to a product. The modeling of bios- sors involves solving the diffusion equations for substrate and product with a term containing a rate of biocatalytical transformation of substrate. The complications of modeling arise due to solving of partially differential equations with non-linear biocatalytical term and with complex boundary and initial conditions. The book starts with the modeling biosensors by analytical solution of partial differential equations. Historically this method was used to describe fundamental features of biosensors action though it is limited by substrate concentration, and is applicable for simple biocatalytical processes. Using this method the action of biosensors was analyzed at critical concentrations of substrate and enzyme activity.
"synopsis" may belong to another edition of this title.
This book presents biosensor development and modeling from both a chemical and a mathematical point of view. It contains unique modeling methods for catalytical (amperometric, potentiometer and optical) biosensors. It examines processes that occur in the sensors' layers and at their interface, and it provides analytical and numerical methods to solve enzymatic kinetic and diffusion equations. The action of single enzyme as well as polyenzyme biosensors is studied, and the modeling of biosensors that contain perforated membranes and multipart mass transport profiles is critically investigated. Furthermore, it is fully described how signals can be biochemically amplified, how cascades of enzymatic substrate conversion are triggered, and how signals are processed via a chemometric approach and artificial neuronal networks. The results of digital modeling are compared with both proximal analytical solutions and experimental data.
"About this title" may belong to another edition of this title.
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9789400730908
Quantity: 2 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789400730908_new
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0412070049963
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Biosensors are analytical devices in which speci c recognition of the chemical substances is performed by biological material. The biological material that serves as recognition element is used in combination with a transducer. The transducer transforms concentration of substrate or product to electrical signal that is amp- ed and further processed. The biosensors may utilize enzymes, antibodies, nucleic acids, organelles, plant and animal tissue, whole organism or organs. Biosensors containing biological catalysts (enzymes) are called catalytical biosensors. These type of biosensors are the most abundant, and they found the largest application in medicine, ecology, and environmental monitoring. The action of catalytical biosensors is associated with substrate diffusion into biocatalytical membrane and it conversion to a product. The modeling of bios- sors involves solving the diffusion equations for substrate and product with a term containing a rate of biocatalytical transformation of substrate. The complications of modeling arise due to solving of partially differential equations with non-linear biocatalytical term and with complex boundary and initial conditions. The book starts with the modeling biosensors by analytical solution of partial differential equations. Historically this method was used to describe fundamental features of biosensors action though it is limited by substrate concentration, and is applicable for simple biocatalytical processes. Using this method the action of biosensors was analyzed at critical concentrations of substrate and enzyme activity. 356 pp. Englisch. Seller Inventory # 9789400730908
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First monograph covering the mathematical aspects of biosensorsOnly monograph to describe digital modeling of biosensorsUnique modeling methods for a wide range of biosensorsGreat compendium of biosensor development and their mathema. Seller Inventory # 5826152
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 356 Index. Seller Inventory # 2614419277
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 356 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 11254418
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Biosensors are analytical devices in which speci c recognition of the chemical substances is performed by biological material. The biological material that serves as recognition element is used in combination with a transducer. The transducer transforms concentration of substrate or product to electrical signal that is amp- ed and further processed. The biosensors may utilize enzymes, antibodies, nucleic acids, organelles, plant and animal tissue, whole organism or organs. Biosensors containing biological catalysts (enzymes) are called catalytical biosensors. These type of biosensors are the most abundant, and they found the largest application in medicine, ecology, and environmental monitoring. The action of catalytical biosensors is associated with substrate diffusion into biocatalytical membrane and it conversion to a product. The modeling of bios- sors involves solving the diffusion equations for substrate and product with a term containing a rate of biocatalytical transformation of substrate. The complications of modeling arise due to solving of partially differential equations with non-linear biocatalytical term and with complex boundary and initial conditions. The book starts with the modeling biosensors by analytical solution of partial differential equations. Historically this method was used to describe fundamental features of biosensors action though it is limited by substrate concentration, and is applicable for simple biocatalytical processes. Using this method the action of biosensors was analyzed at critical concentrations of substrate and enzyme activity. 356 pp. Englisch. Seller Inventory # 9789400730908
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Biosensors are analytical devices in which speci c recognition of the chemical substances is performed by biological material. The biological material that serves as recognition element is used in combination with a transducer. The transducer transforms concentration of substrate or product to electrical signal that is amp- ed and further processed. The biosensors may utilize enzymes, antibodies, nucleic acids, organelles, plant and animal tissue, whole organism or organs. Biosensors containing biological catalysts (enzymes) are called catalytical biosensors. These type of biosensors are the most abundant, and they found the largest application in medicine, ecology, and environmental monitoring. The action of catalytical biosensors is associated with substrate diffusion into biocatalytical membrane and it conversion to a product. The modeling of bios- sors involves solving the diffusion equations for substrate and product with a term containing a rate of biocatalytical transformation of substrate. The complications of modeling arise due to solving of partially differential equations with non-linear biocatalytical term and with complex boundary and initial conditions. The book starts with the modeling biosensors by analytical solution of partial differential equations. Historically this method was used to describe fundamental features of biosensors action though it is limited by substrate concentration, and is applicable for simple biocatalytical processes. Using this method the action of biosensors was analyzed at critical concentrations of substrate and enzyme activity. Seller Inventory # 9789400730908
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 356. Seller Inventory # 1814419271
Quantity: 4 available