Preface. Introduction. 1. The Boltzmann Equation as a Physical and Mathematical Model. 2. Survey of Mathematical Approaches to Solving the Boltzmann Equation. 3. Main Features of the Direct Numerical Approaches. 4. Deterministic (Regular) Method for Solving the Boltzmann Equation. 5. Construction of Conservative Scheme for the Kinetic Equation. 6. Parallel Algorithms for the Kinetic Equation. 7. Application of the Conservative Splitting Method for Investigating Near Continuum Gas Flows. 8. Study of Uniform Relaxation in Kinetic Gas Theory. 9. Nonuniform Relaxation Problem as a Basic Model for Description of Open Systems. 10. One-Dimensional Kinetic Problems. 11. Multi-Dimensional Problems. Study of Free Jet Flows. 12. The Boltzmann Equation and the Description of Unstable Flows. 13. Solutions of Some Multi-Dimensional Problems. 14. Special Hypersonic Flows and Flows with Very High Temperatures.
"synopsis" may belong to another edition of this title.