An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m< (called the stagnancy rate). The necessary and sufficient conditions for a pair k, m was obtained so that the correspondence is precisely described. For this, Itô used, as a fundamental tool, the notion of Poisson point processes formed of all excursions of the process on S \ {a}. This theory of Itô's of Poisson point processes of excursions is indeed a breakthrough. It has been expanded and applied to more general extension problems by many succeeding researchers. Thus we may say that this lecture note by Itô is really a memorial work in the extension problems of Markov processes. Especially in Chapter 1 of this note, a general theory of Poisson point processes is given that reminds us of Itô's beautiful and impressive lectures in his day.
"synopsis" may belong to another edition of this title.
“The main idea of this volume has had a profound influence on the boundary theory of Markov processes. This volume is beautifully written and it is a pleasure to read.” (Ren Ming Song, Mathematical Reviews, December, 2016)
"About this title" may belong to another edition of this title.
US$ 2.64 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 25079976
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 25079976-n
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Ito, and H. P. McKean, among others. In this book, Ito discussed a case of a general Markov process with state space S and a specified point a S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m< (called the stagnancy rate). The necessary and sufficient conditions for a pair k, m was obtained so that the correspondence is precisely described. For this, Ito used, as a fundamental tool, the notion of Poisson point processes formed of all excursions of the process on S \ {a}. This theory of Ito's of Poisson point processes of excursions is indeed a breakthrough. It has been expanded and applied to more general extension problems by many succeeding researchers. Thus we may say that this lecture note by Ito is really a memorial work in the extension problems of Markov processes. Especially in Chapter 1 of this note, a general theory of Poisson point processes is given that reminds us of Ito's beautiful and impressive lectures in his day. An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. For this, Ito used, as a fundamental tool, the notion of Poisson point processes formed of all excursions of the process on S \ {a}. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9789811002717
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0412070079839
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9789811002717
Quantity: 2 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9789811002717
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789811002717_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9789811002717
Quantity: 10 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 25079976-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 25079976
Quantity: Over 20 available