This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.
"synopsis" may belong to another edition of this title.
Il Do Ha is a full professor in the Department of Statistics at Pukyong National University in South Korea. His research interests are multivariate survival analysis using h-likelihood, inferences on random-effect models, clinical trials and financial statistics. Dr. Ha received his Ph.D. degree in statistics from Seoul National University. He has served as an Associate Editor of Computational Statistics until 2008-2012 and has been a fellow of the Royal Statistical Society (RSS) since 2006. Jong-Hyeon Jeong is a full professor in the Department of Biostatistics at University of Pittsburgh in USA. His research interests are in survival analysis, including competing risks, quantile residual life, empirical likelihood, h-likelihood, frailty model and clinical trials. He has published his first book with Springer: Jeong, J.-H. (2014) Statistical Inference on Residual Life, New York: Springer. Dr. Jeong received his Ph.D. degree in statistics from University of Rochester. He has been a fellow of the American Statistical Association (ASA) since 2017 as well as an elected member of the international Statistical Institute (ISI) since 2007. Dr. Jeong is also serving on the editorial board for the journal “Lifetime Data Analysis”. Youngjo Lee is a full professor in the Department of Statistics at Seoul National University in South Korea and also an adjunct professor of Karolinska Institutet in Sweden. His research interests are extension, application, theory and software development for hierarchical GLM (HGLM) and multivariate survival models using h-likelihood. He has published a HGLM book with Chapman and Hall: Lee, Y., Nelder, J. A. and Pawitan, Y. (2017) Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood, 2nd edition, Boca Raton: Chapman and Hall. Dr. Lee received his Ph.D. degree in statistics from Iowa State University. He has been a fellow of the Royal Statistical Society (RSS) since 1996 as well as the American Statistical Association (ASA) since 2013.
This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.
"About this title" may belong to another edition of this title.
US$ 26.80 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R ('frailtyHL'), while the real-world data examples together with an R package, 'frailtyHL' in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians. 300 pp. Englisch. Seller Inventory # 9789811349010
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Il Do Ha is a full professor in the Department of Statistics at Pukyong National University in South Korea. His research interests are multivariate survival analysis using h-likelihood, inferences on random-effect models, clinical trials and financial stati. Seller Inventory # 449937685
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 300. Seller Inventory # 26376148621
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 300. Seller Inventory # 370945362
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 300 pages. 9.25x6.10x0.68 inches. In Stock. Seller Inventory # __9811349010
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (¿frailtyHL¿), while the real-world data examples together with an R package, ¿frailtyHL¿ in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch. Seller Inventory # 9789811349010
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R ('frailtyHL'), while the real-world data examples together with an R package, 'frailtyHL' in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians. Seller Inventory # 9789811349010
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 300. Seller Inventory # 18376148615
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: New. New. book. Seller Inventory # ERICA80098113490106
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 300 pages. 9.25x6.10x0.68 inches. In Stock. Seller Inventory # zk9811349010
Quantity: 1 available